Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex
Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less inv...
Saved in:
| Published in | Journal of neural engineering Vol. 9; no. 3; pp. 36006 - 1-16 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.06.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2560/9/3/036006 |
Cover
| Summary: | Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical local field potentials (LFPs) from ECoG signals would provide a critical step for the development of a less invasive, high-performance brain-machine interface; however, neural signals from individual ECoG channels are generally coarse and have limitations in estimating deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm beneath the cortical surface, the real and estimated LFPs were significantly correlated (correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04. A time-frequency analysis of the reconstructed LFP showed clear transition between resting and movements by the monkey. These methods would be a powerful tool with wide-ranging applicability in neuroscience studies. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1741-2560 1741-2552 1741-2552 |
| DOI: | 10.1088/1741-2560/9/3/036006 |