Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy Classification
Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all ra...
Saved in:
| Published in | IEEE journal of biomedical and health informatics Vol. 24; no. 1; pp. 194 - 204 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2194 2168-2208 2168-2208 |
| DOI | 10.1109/JBHI.2019.2902298 |
Cover
| Abstract | Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. Methods: this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. Results: we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Conclusion:the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. Significance: the proposed method is general and more effective radiomic feature selection strategy. |
|---|---|
| AbstractList | accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical.OBJECTIVEaccurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical.this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically.METHODSthis work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically.we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis.RESULTSwe evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis.the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods.CONCLUSIONthe experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods.the proposed method is general and more effective radiomic feature selection strategy.SIGNIFICANCEthe proposed method is general and more effective radiomic feature selection strategy. Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. Methods: this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. Results: we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Conclusion:the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. Significance: the proposed method is general and more effective radiomic feature selection strategy. accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. the proposed method is general and more effective radiomic feature selection strategy. |
| Author | Zhou, Zhiguo Jiang, Steve Folkert, Michael Qin, Genggeng Wang, Jing Li, Shulong |
| Author_xml | – sequence: 1 givenname: Zhiguo orcidid: 0000-0003-4031-3178 surname: Zhou fullname: Zhou, Zhiguo email: zhiguo.zhou@utsouthwestern.edu organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA – sequence: 2 givenname: Shulong surname: Li fullname: Li, Shulong email: shulong@smu.edu.cn organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 3 givenname: Genggeng surname: Qin fullname: Qin, Genggeng email: genggeng.qin@utsouthwestern.edu organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 4 givenname: Michael orcidid: 0000-0002-2886-0956 surname: Folkert fullname: Folkert, Michael email: michaelr.folkert@utsouthwestern.edu organization: Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA – sequence: 5 givenname: Steve surname: Jiang fullname: Jiang, Steve email: steve.jiang@utsouthwestern.edu organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA – sequence: 6 givenname: Jing orcidid: 0000-0002-8491-4146 surname: Wang fullname: Wang, Jing email: jing.wang@utsouthwestern.edu organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30835231$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kttuEzEQhi1URI8PgJDQStxws8Gntb03SDSitChVpUKvLcc72zpy7LDeLcrb10vSA0HCN2PZ3z-e-ceHaC_EAAi9JXhCCK4_fT89v5hQTOoJrTGltXqFDigRqqQUq73HPan5PjpJaYHzUvmoFm_QPsOKVZSRA3RzOfjelVfzBdje3UN5ahI0xbVpXFw6W5yB6YcOih_gRyCGoo1dMYM0bi-Nd7fBBLsupt6k5FpnzQgdo9et8QlOtvEI3Zx9_Tk9L2dX3y6mX2al5Vz2JbUAmLRUYIF5zTkAZxKzHIyBqjGksbhVVrAWE8IsVVwCqeaYg5SsNYIdIbrJO4SVWf823utV55amW2uC9WiTXszvnB5t0lubsujzRrQa5ktoLIS-M8_CaJz--ya4O30b77UkNROS5gQftwm6-GuA1OulSxa8NwHikDQlSlGCheAZ_bCDLuLQheyJpowxSSUmMlPvX1b0VMrjmDJANoDtYkodtP-0Of6G3Tbljsa6_s90clPO_1f5bqN0APD0khIVr5RgD1dUv88 |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1002_mp_15293 crossref_primary_10_1016_j_eswa_2024_124665 crossref_primary_10_1016_j_acra_2020_05_004 crossref_primary_10_1016_j_bspc_2024_107139 crossref_primary_10_1109_JBHI_2024_3406256 crossref_primary_10_1109_JTEHM_2021_3108390 crossref_primary_10_1109_JBHI_2020_3043236 crossref_primary_10_1007_s00330_022_09255_8 crossref_primary_10_3934_mbe_2021004 crossref_primary_10_23736_S1824_4785_19_03192_3 crossref_primary_10_1109_JIOT_2024_3366889 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_56294_dm2025184 crossref_primary_10_1016_j_knosys_2021_107649 crossref_primary_10_3390_diagnostics12020274 crossref_primary_10_1016_j_compbiomed_2023_107122 crossref_primary_10_1080_03772063_2021_1946440 crossref_primary_10_1088_1361_6560_ab8956 crossref_primary_10_3934_mbe_2021208 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_3390_app13042218 crossref_primary_10_1109_ACCESS_2021_3052776 |
| Cites_doi | 10.1109/TEVC.2007.892759 10.1109/TMI.2016.2591921 10.1109/ICCV.2017.156 10.1007/s10549-018-4675-4 10.1038/srep13087 10.1038/npjbcancer.2016.12 10.1145/3065386 10.1109/TEVC.2015.2504420 10.1186/1472-6947-13-123 10.1109/ICCV.2015.478 10.1109/21.259681 10.1016/j.ipl.2009.03.029 10.1109/TSMCA.2002.802746 10.1118/1.3528204 10.1109/4235.996017 10.1038/nrclinonc.2017.141 10.1109/TEVC.2015.2480780 10.1162/evco.2008.16.2.225 10.1016/j.eswa.2009.10.016 10.1109/CVPR.2018.00920 10.1109/ICPR.2002.1044794 10.1007/978-3-642-03625-5_2 10.1038/ncomms5006 10.1016/j.compbiomed.2013.07.023 10.1088/1361-6560/aa6ae5 10.1016/j.ejor.2004.09.059 10.1016/j.compeleceng.2013.11.024 10.1016/S0377-2217(99)00441-5 10.1016/j.dss.2006.12.011 10.1109/TSMCB.2012.2227469 10.1016/j.patcog.2009.06.009 10.1109/CEC.2000.870311 10.7785/tcrt.2012.500214 10.1109/TMI.2004.842457 10.1007/978-3-319-11857-4_44 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/JBHI.2019.2902298 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Statistics |
| EISSN | 2168-2208 |
| EndPage | 204 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7193672 PMC7193672 30835231 10_1109_JBHI_2019_2902298 8654586 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: American Cancer Society grantid: ACS-IRG-02-196 funderid: 10.13039/100000048 – fundername: National Institutes of Health; US National Institutes of Health grantid: R01 EB020366 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB020366 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c447t-2cee01f260604944ee43703ee4aae5da1dc0f8c63f0113c2847e15b04e773fa63 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Oct 26 03:39:07 EDT 2025 Tue Sep 30 16:48:38 EDT 2025 Sun Sep 28 03:14:32 EDT 2025 Sun Oct 05 00:14:05 EDT 2025 Mon Jul 21 06:05:03 EDT 2025 Wed Oct 01 03:39:57 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Wed Aug 27 02:40:57 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-2cee01f260604944ee43703ee4aae5da1dc0f8c63f0113c2847e15b04e773fa63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2886-0956 0000-0002-8491-4146 0000-0003-4031-3178 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7193672 |
| PMID | 30835231 |
| PQID | 2333727017 |
| PQPubID | 85417 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2333727017 crossref_primary_10_1109_JBHI_2019_2902298 unpaywall_primary_10_1109_jbhi_2019_2902298 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7193672 ieee_primary_8654586 pubmed_primary_30835231 crossref_citationtrail_10_1109_JBHI_2019_2902298 proquest_miscellaneous_2188210664 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ishibuchi (ref40) 0 ref33 ref11 ref32 ref10 ref2 ref1 ref17 yan (ref39) 2018 ref38 ref16 ref19 ref18 ma (ref6) 2016; 9789 kendall (ref28) 1948; 1 ref24 ref23 ref26 ref25 ref20 ref21 zio (ref22) 2012; 6 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref32 doi: 10.1109/TEVC.2007.892759 – ident: ref7 doi: 10.1109/TMI.2016.2591921 – ident: ref34 doi: 10.1109/ICCV.2017.156 – ident: ref9 doi: 10.1007/s10549-018-4675-4 – ident: ref12 doi: 10.1038/srep13087 – ident: ref8 doi: 10.1038/npjbcancer.2016.12 – ident: ref36 doi: 10.1145/3065386 – ident: ref10 doi: 10.1109/TEVC.2015.2504420 – volume: 6 start-page: 23 year: 2012 ident: ref22 article-title: A comparison publication-title: Comput Intell Syst Ind Eng – ident: ref25 doi: 10.1186/1472-6947-13-123 – ident: ref33 doi: 10.1109/ICCV.2015.478 – year: 2018 ident: ref39 article-title: Hybrid deep neural networks for all-cause mortality prediction from LDCT Images – ident: ref23 doi: 10.1109/21.259681 – volume: 1 year: 1948 ident: ref28 publication-title: Advances – ident: ref14 doi: 10.1016/j.ipl.2009.03.029 – ident: ref24 doi: 10.1109/TSMCA.2002.802746 – ident: ref26 doi: 10.1118/1.3528204 – ident: ref31 doi: 10.1109/4235.996017 – ident: ref5 doi: 10.1038/nrclinonc.2017.141 – ident: ref21 doi: 10.1109/TEVC.2015.2480780 – ident: ref27 doi: 10.1162/evco.2008.16.2.225 – ident: ref2 doi: 10.1016/j.eswa.2009.10.016 – ident: ref38 doi: 10.1109/CVPR.2018.00920 – ident: ref17 doi: 10.1109/ICPR.2002.1044794 – ident: ref20 doi: 10.1007/978-3-642-03625-5_2 – ident: ref4 doi: 10.1038/ncomms5006 – ident: ref35 doi: 10.1016/j.compbiomed.2013.07.023 – ident: ref13 doi: 10.1088/1361-6560/aa6ae5 – ident: ref30 doi: 10.1016/j.ejor.2004.09.059 – start-page: 47 year: 0 ident: ref40 article-title: Evolutionary many-objective optimization publication-title: Proc 3rd Int Workshop Genetic Evolv Syst – ident: ref11 doi: 10.1016/j.compeleceng.2013.11.024 – ident: ref29 doi: 10.1016/S0377-2217(99)00441-5 – ident: ref15 doi: 10.1016/j.dss.2006.12.011 – ident: ref18 doi: 10.1109/TSMCB.2012.2227469 – ident: ref37 doi: 10.1016/j.patcog.2009.06.009 – ident: ref16 doi: 10.1109/CEC.2000.870311 – ident: ref3 doi: 10.7785/tcrt.2012.500214 – ident: ref1 doi: 10.1109/TMI.2004.842457 – volume: 9789 year: 2016 ident: ref6 article-title: Automatic lung nodule classification with radiomics approach publication-title: Proc SPIE – ident: ref19 doi: 10.1007/978-3-319-11857-4_44 |
| SSID | ssj0000816896 |
| Score | 2.4045885 |
| Snippet | Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great... accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 194 |
| SubjectTerms | Algorithms Breast Breast cancer Classification Databases, Factual Entropy Evidential reasoning Feature extraction feature selection Humans Image classification Informatics lesion malignancy classification Lesions Linear programming Malignancy multi-objective evolutionary algorithm Multiple objective analysis Mutation Neoplasms - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted - methods Radiomics Sociology Statistics Tomography, X-Ray Computed Tumors |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemmwS88DXYCgMViSdQe0mTps3jNm06JjbQ4KTxVKVput24dadxFRp_PU6aVhxDSHtqpbiVLDv2z7FjA7wtk0orLvOoZiqLuDE8yrVkkWCZNJTrRBnX7fNYTKb88DQ9XQPa34VxRfu6nMXN_DJuZueutnJxqcd9ndg4Q8ghMrS66yJF-D2C9enx551vdogcFSh16oYfdu8JyX0mkxI5vijPZ7aYS8aJRNcl8xVf5Iar_Atn3i6XvN82C3XzU83nf_iig0dw0nPRlaB8j9tlGetffzV4vBObj-GhR6bhTrf0BNZM8xTuHfnc-wZM3V3d6FN50dnIaBcdYBWeqGpmbzaHFky21yb84ibroLhDxMPhR2OP48IjhPtntrfHTejGcNoCJacTz2B6sP91bxL5oQyR5jxbRgl6VUJrDIOEbS1jpcvQauBDKZNWilaa1LkWrEbLwbT1foamJeEmy1itBHsOo-aqMVsQYqiUJ1Uuc0oqnvJSEUmMkqpkPNEV1wGQXjyF9h3L7eCMeeEiFyKLw93Jh8JKtPASDeDd8Mmia9fxP-INK_OBMBc2iygC2O51oPAb-keRMMYQ6qH9CuDNsIxb0eZXVGOuWqShGK5giC14AJudygz_Zg7qMhpAtqJMA4Ft8726gmrh2n17TQjg_aB2t3izqr3C24s7Ub-EB4k9R3BHS9swWl635hWCrWX52m-v39OEJOk priority: 102 providerName: Unpaywall |
| Title | Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy Classification |
| URI | https://ieeexplore.ieee.org/document/8654586 https://www.ncbi.nlm.nih.gov/pubmed/30835231 https://www.proquest.com/docview/2333727017 https://www.proquest.com/docview/2188210664 https://pubmed.ncbi.nlm.nih.gov/PMC7193672 https://www.ncbi.nlm.nih.gov/pmc/articles/7193672 |
| UnpaywallVersion | submittedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2208 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ4K98LExCIwpSDwB7hLbtePHDTGViQ4EVBpPkeM4rKNKp9EIjb-eOyeNKJsQT40Ut9L1zr7fffh3AC8KXjorTcYqYTWT3kuWOSOYEtr4VDpufWD7PFGjiTw-HZ6uwev-Loz3PjSf-QE9hlp-OXcNpcr2M0VlHrUO6zpT7V2tPp8SBkiEcVwcHxhuRNkVMdPE7B8fjt5RH5cZcINey2QrbijMVbkJYl7vlLzT1Bf26qedzf5wQ0f3YLwUoO0--T5oFsXA_fqL2_F_JbwPdzs8Gh-0BvQA1ny9BbfHXcV9CzYJjbZkztswCdd12YfivD0m2SH6wDL-ZMspXW6OCU82lz7-HIbroMZjhMTxe08ZuXiMiP8b0XtcxWESJ_UoBbN4CJOjt1_ejFg3l4E5KfWCcXSsSVphJKSIXYYULPDgwA9r_bC0aemSKnNKVHh4CEcO0KfDIpFea1FZJXZgo57X_jHEGC1lvMxMlialHMrCJibx1thCSO5K6SJIlmrKXUdaTrMzZnkIXhKTk2Zz0mzeaTaCl_1XLlrGjn8t3iYl9Au7_z-C3aUt5N2e_pFzIQSiPTzCInjev8bdSCUWW_t5g2tSjFgwylYygket6fS_LQLaFWkEesWo-gXE9L36pp6eBcZvjTBbaR7Bq978rsl2XpxNV2R7crNsT2GTU84gpJF2YWNx2fhnCKwWxV7YUXtwa3Ly8eDrbxBIH8Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIbG9DNiABQYYiSfAXWI7H35kiKkb7ZBglfYWOY7DOqp0Go3Q-Ou5c9KIsgnx1EhxK13v7Pvdh38H8LoQpTVKZ7ySJuXKOcUzqyVPZKpdpKwwzrN9niTDiTo-i8_W4F1_F8Y555vP3IAefS2_nNuGUmX7WUJlnuQO3I2VUnF7W6vPqPgREn4gl8AHjltRdWXMKNT7xwfDI-rk0gOh0W_pbMUR-ckqt4HMm72SG019aa5_mtnsD0d0eB_GSxHa_pPvg2ZRDOyvv9gd_1fGB7DVIVL2vjWhh7Dm6m24N-5q7tuwSXi0pXPegYm_sMs_FxftQckP0AuW7Ispp3S9mRGibK4c--rH66DOGYJiNnKUk2NjxPzfiODjmvlZnNSl5A3jEUwOP55-GPJuMgO3SqULLtC1hlGFsVBC_DKkYolHB34Y4-LSRKUNq8wmssLjQ1pygS6Ki1C5NJWVSeRjWK_ntdsFhvFSJspMZ1FYqlgVJtShM9oUUglbKhtAuFRTbjvacpqeMct9-BLqnDSbk2bzTrMBvOm_ctlydvxr8Q4poV_Y_f8B7C1tIe929Y9cSCkR7-EhFsCr_jXuRyqymNrNG1wTYcyCcXaiAnjSmk7_29LjXRkFkK4YVb-AuL5X39TTc8_5nSLQTlIRwNve_G7IdlGcT1dke3q7bC9hY3g6HuWjo5NPz2BTUAbBJ5X2YH1x1bjnCLMWxQu_u34DLkUhYQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemmwS88DXYCgMViSdQe0mTps3jNm06JjbQ4KTxVKVput24dadxFRp_PU6aVhxDSHtqpbiVLDv2z7FjA7wtk0orLvOoZiqLuDE8yrVkkWCZNJTrRBnX7fNYTKb88DQ9XQPa34VxRfu6nMXN_DJuZueutnJxqcd9ndg4Q8ghMrS66yJF-D2C9enx551vdogcFSh16oYfdu8JyX0mkxI5vijPZ7aYS8aJRNcl8xVf5Iar_Atn3i6XvN82C3XzU83nf_iig0dw0nPRlaB8j9tlGetffzV4vBObj-GhR6bhTrf0BNZM8xTuHfnc-wZM3V3d6FN50dnIaBcdYBWeqGpmbzaHFky21yb84ibroLhDxMPhR2OP48IjhPtntrfHTejGcNoCJacTz2B6sP91bxL5oQyR5jxbRgl6VUJrDIOEbS1jpcvQauBDKZNWilaa1LkWrEbLwbT1foamJeEmy1itBHsOo-aqMVsQYqiUJ1Uuc0oqnvJSEUmMkqpkPNEV1wGQXjyF9h3L7eCMeeEiFyKLw93Jh8JKtPASDeDd8Mmia9fxP-INK_OBMBc2iygC2O51oPAb-keRMMYQ6qH9CuDNsIxb0eZXVGOuWqShGK5giC14AJudygz_Zg7qMhpAtqJMA4Ft8726gmrh2n17TQjg_aB2t3izqr3C24s7Ub-EB4k9R3BHS9swWl635hWCrWX52m-v39OEJOk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+based+radiomic+feature+selection+for+lesion+malignancy+classification&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhou%2C+Zhiguo&rft.au=Li%2C+Shulong&rft.au=Qin%2C+Genggeng&rft.au=Folkert%2C+Michael&rft.date=2020-01-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=24&rft.issue=1&rft.spage=194&rft.epage=204&rft_id=info:doi/10.1109%2FJBHI.2019.2902298&rft_id=info%3Apmid%2F30835231&rft.externalDocID=PMC7193672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |