Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy Classification

Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all ra...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 1; pp. 194 - 204
Main Authors Zhou, Zhiguo, Li, Shulong, Qin, Genggeng, Folkert, Michael, Jiang, Steve, Wang, Jing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2019.2902298

Cover

Abstract Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. Methods: this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. Results: we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Conclusion:the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. Significance: the proposed method is general and more effective radiomic feature selection strategy.
AbstractList accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical.OBJECTIVEaccurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical.this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically.METHODSthis work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically.we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis.RESULTSwe evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis.the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods.CONCLUSIONthe experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods.the proposed method is general and more effective radiomic feature selection strategy.SIGNIFICANCEthe proposed method is general and more effective radiomic feature selection strategy.
Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. Methods: this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. Results: we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Conclusion:the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. Significance: the proposed method is general and more effective radiomic feature selection strategy.
accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. the proposed method is general and more effective radiomic feature selection strategy.
Author Zhou, Zhiguo
Jiang, Steve
Folkert, Michael
Qin, Genggeng
Wang, Jing
Li, Shulong
Author_xml – sequence: 1
  givenname: Zhiguo
  orcidid: 0000-0003-4031-3178
  surname: Zhou
  fullname: Zhou, Zhiguo
  email: zhiguo.zhou@utsouthwestern.edu
  organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 2
  givenname: Shulong
  surname: Li
  fullname: Li, Shulong
  email: shulong@smu.edu.cn
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Genggeng
  surname: Qin
  fullname: Qin, Genggeng
  email: genggeng.qin@utsouthwestern.edu
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-2886-0956
  surname: Folkert
  fullname: Folkert, Michael
  email: michaelr.folkert@utsouthwestern.edu
  organization: Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 5
  givenname: Steve
  surname: Jiang
  fullname: Jiang, Steve
  email: steve.jiang@utsouthwestern.edu
  organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
– sequence: 6
  givenname: Jing
  orcidid: 0000-0002-8491-4146
  surname: Wang
  fullname: Wang, Jing
  email: jing.wang@utsouthwestern.edu
  organization: Medical Artificial Intelligence and Automation Laboratory and the Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30835231$$D View this record in MEDLINE/PubMed
BookMark eNp9kttuEzEQhi1URI8PgJDQStxws8Gntb03SDSitChVpUKvLcc72zpy7LDeLcrb10vSA0HCN2PZ3z-e-ceHaC_EAAi9JXhCCK4_fT89v5hQTOoJrTGltXqFDigRqqQUq73HPan5PjpJaYHzUvmoFm_QPsOKVZSRA3RzOfjelVfzBdje3UN5ahI0xbVpXFw6W5yB6YcOih_gRyCGoo1dMYM0bi-Nd7fBBLsupt6k5FpnzQgdo9et8QlOtvEI3Zx9_Tk9L2dX3y6mX2al5Vz2JbUAmLRUYIF5zTkAZxKzHIyBqjGksbhVVrAWE8IsVVwCqeaYg5SsNYIdIbrJO4SVWf823utV55amW2uC9WiTXszvnB5t0lubsujzRrQa5ktoLIS-M8_CaJz--ya4O30b77UkNROS5gQftwm6-GuA1OulSxa8NwHikDQlSlGCheAZ_bCDLuLQheyJpowxSSUmMlPvX1b0VMrjmDJANoDtYkodtP-0Of6G3Tbljsa6_s90clPO_1f5bqN0APD0khIVr5RgD1dUv88
CODEN IJBHA9
CitedBy_id crossref_primary_10_1002_mp_15293
crossref_primary_10_1016_j_eswa_2024_124665
crossref_primary_10_1016_j_acra_2020_05_004
crossref_primary_10_1016_j_bspc_2024_107139
crossref_primary_10_1109_JBHI_2024_3406256
crossref_primary_10_1109_JTEHM_2021_3108390
crossref_primary_10_1109_JBHI_2020_3043236
crossref_primary_10_1007_s00330_022_09255_8
crossref_primary_10_3934_mbe_2021004
crossref_primary_10_23736_S1824_4785_19_03192_3
crossref_primary_10_1109_JIOT_2024_3366889
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_56294_dm2025184
crossref_primary_10_1016_j_knosys_2021_107649
crossref_primary_10_3390_diagnostics12020274
crossref_primary_10_1016_j_compbiomed_2023_107122
crossref_primary_10_1080_03772063_2021_1946440
crossref_primary_10_1088_1361_6560_ab8956
crossref_primary_10_3934_mbe_2021208
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_3390_app13042218
crossref_primary_10_1109_ACCESS_2021_3052776
Cites_doi 10.1109/TEVC.2007.892759
10.1109/TMI.2016.2591921
10.1109/ICCV.2017.156
10.1007/s10549-018-4675-4
10.1038/srep13087
10.1038/npjbcancer.2016.12
10.1145/3065386
10.1109/TEVC.2015.2504420
10.1186/1472-6947-13-123
10.1109/ICCV.2015.478
10.1109/21.259681
10.1016/j.ipl.2009.03.029
10.1109/TSMCA.2002.802746
10.1118/1.3528204
10.1109/4235.996017
10.1038/nrclinonc.2017.141
10.1109/TEVC.2015.2480780
10.1162/evco.2008.16.2.225
10.1016/j.eswa.2009.10.016
10.1109/CVPR.2018.00920
10.1109/ICPR.2002.1044794
10.1007/978-3-642-03625-5_2
10.1038/ncomms5006
10.1016/j.compbiomed.2013.07.023
10.1088/1361-6560/aa6ae5
10.1016/j.ejor.2004.09.059
10.1016/j.compeleceng.2013.11.024
10.1016/S0377-2217(99)00441-5
10.1016/j.dss.2006.12.011
10.1109/TSMCB.2012.2227469
10.1016/j.patcog.2009.06.009
10.1109/CEC.2000.870311
10.7785/tcrt.2012.500214
10.1109/TMI.2004.842457
10.1007/978-3-319-11857-4_44
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/JBHI.2019.2902298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 2168-2208
EndPage 204
ExternalDocumentID oai:pubmedcentral.nih.gov:7193672
PMC7193672
30835231
10_1109_JBHI_2019_2902298
8654586
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Cancer Society
  grantid: ACS-IRG-02-196
  funderid: 10.13039/100000048
– fundername: National Institutes of Health; US National Institutes of Health
  grantid: R01 EB020366
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB020366
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c447t-2cee01f260604944ee43703ee4aae5da1dc0f8c63f0113c2847e15b04e773fa63
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Sun Oct 26 03:39:07 EDT 2025
Tue Sep 30 16:48:38 EDT 2025
Sun Sep 28 03:14:32 EDT 2025
Sun Oct 05 00:14:05 EDT 2025
Mon Jul 21 06:05:03 EDT 2025
Wed Oct 01 03:39:57 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Wed Aug 27 02:40:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2cee01f260604944ee43703ee4aae5da1dc0f8c63f0113c2847e15b04e773fa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2886-0956
0000-0002-8491-4146
0000-0003-4031-3178
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7193672
PMID 30835231
PQID 2333727017
PQPubID 85417
PageCount 11
ParticipantIDs proquest_journals_2333727017
crossref_primary_10_1109_JBHI_2019_2902298
unpaywall_primary_10_1109_jbhi_2019_2902298
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7193672
ieee_primary_8654586
pubmed_primary_30835231
crossref_citationtrail_10_1109_JBHI_2019_2902298
proquest_miscellaneous_2188210664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ishibuchi (ref40) 0
ref33
ref11
ref32
ref10
ref2
ref1
ref17
yan (ref39) 2018
ref38
ref16
ref19
ref18
ma (ref6) 2016; 9789
kendall (ref28) 1948; 1
ref24
ref23
ref26
ref25
ref20
ref21
zio (ref22) 2012; 6
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
References_xml – ident: ref32
  doi: 10.1109/TEVC.2007.892759
– ident: ref7
  doi: 10.1109/TMI.2016.2591921
– ident: ref34
  doi: 10.1109/ICCV.2017.156
– ident: ref9
  doi: 10.1007/s10549-018-4675-4
– ident: ref12
  doi: 10.1038/srep13087
– ident: ref8
  doi: 10.1038/npjbcancer.2016.12
– ident: ref36
  doi: 10.1145/3065386
– ident: ref10
  doi: 10.1109/TEVC.2015.2504420
– volume: 6
  start-page: 23
  year: 2012
  ident: ref22
  article-title: A comparison
  publication-title: Comput Intell Syst Ind Eng
– ident: ref25
  doi: 10.1186/1472-6947-13-123
– ident: ref33
  doi: 10.1109/ICCV.2015.478
– year: 2018
  ident: ref39
  article-title: Hybrid deep neural networks for all-cause mortality prediction from LDCT Images
– ident: ref23
  doi: 10.1109/21.259681
– volume: 1
  year: 1948
  ident: ref28
  publication-title: Advances
– ident: ref14
  doi: 10.1016/j.ipl.2009.03.029
– ident: ref24
  doi: 10.1109/TSMCA.2002.802746
– ident: ref26
  doi: 10.1118/1.3528204
– ident: ref31
  doi: 10.1109/4235.996017
– ident: ref5
  doi: 10.1038/nrclinonc.2017.141
– ident: ref21
  doi: 10.1109/TEVC.2015.2480780
– ident: ref27
  doi: 10.1162/evco.2008.16.2.225
– ident: ref2
  doi: 10.1016/j.eswa.2009.10.016
– ident: ref38
  doi: 10.1109/CVPR.2018.00920
– ident: ref17
  doi: 10.1109/ICPR.2002.1044794
– ident: ref20
  doi: 10.1007/978-3-642-03625-5_2
– ident: ref4
  doi: 10.1038/ncomms5006
– ident: ref35
  doi: 10.1016/j.compbiomed.2013.07.023
– ident: ref13
  doi: 10.1088/1361-6560/aa6ae5
– ident: ref30
  doi: 10.1016/j.ejor.2004.09.059
– start-page: 47
  year: 0
  ident: ref40
  article-title: Evolutionary many-objective optimization
  publication-title: Proc 3rd Int Workshop Genetic Evolv Syst
– ident: ref11
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref29
  doi: 10.1016/S0377-2217(99)00441-5
– ident: ref15
  doi: 10.1016/j.dss.2006.12.011
– ident: ref18
  doi: 10.1109/TSMCB.2012.2227469
– ident: ref37
  doi: 10.1016/j.patcog.2009.06.009
– ident: ref16
  doi: 10.1109/CEC.2000.870311
– ident: ref3
  doi: 10.7785/tcrt.2012.500214
– ident: ref1
  doi: 10.1109/TMI.2004.842457
– volume: 9789
  year: 2016
  ident: ref6
  article-title: Automatic lung nodule classification with radiomics approach
  publication-title: Proc SPIE
– ident: ref19
  doi: 10.1007/978-3-319-11857-4_44
SSID ssj0000816896
Score 2.4045885
Snippet Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great...
accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 194
SubjectTerms Algorithms
Breast
Breast cancer
Classification
Databases, Factual
Entropy
Evidential reasoning
Feature extraction
feature selection
Humans
Image classification
Informatics
lesion malignancy classification
Lesions
Linear programming
Malignancy
multi-objective evolutionary algorithm
Multiple objective analysis
Mutation
Neoplasms - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted - methods
Radiomics
Sociology
Statistics
Tomography, X-Ray Computed
Tumors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemmwS88DXYCgMViSdQe0mTps3jNm06JjbQ4KTxVKVput24dadxFRp_PU6aVhxDSHtqpbiVLDv2z7FjA7wtk0orLvOoZiqLuDE8yrVkkWCZNJTrRBnX7fNYTKb88DQ9XQPa34VxRfu6nMXN_DJuZueutnJxqcd9ndg4Q8ghMrS66yJF-D2C9enx551vdogcFSh16oYfdu8JyX0mkxI5vijPZ7aYS8aJRNcl8xVf5Iar_Atn3i6XvN82C3XzU83nf_iig0dw0nPRlaB8j9tlGetffzV4vBObj-GhR6bhTrf0BNZM8xTuHfnc-wZM3V3d6FN50dnIaBcdYBWeqGpmbzaHFky21yb84ibroLhDxMPhR2OP48IjhPtntrfHTejGcNoCJacTz2B6sP91bxL5oQyR5jxbRgl6VUJrDIOEbS1jpcvQauBDKZNWilaa1LkWrEbLwbT1foamJeEmy1itBHsOo-aqMVsQYqiUJ1Uuc0oqnvJSEUmMkqpkPNEV1wGQXjyF9h3L7eCMeeEiFyKLw93Jh8JKtPASDeDd8Mmia9fxP-INK_OBMBc2iygC2O51oPAb-keRMMYQ6qH9CuDNsIxb0eZXVGOuWqShGK5giC14AJudygz_Zg7qMhpAtqJMA4Ft8726gmrh2n17TQjg_aB2t3izqr3C24s7Ub-EB4k9R3BHS9swWl635hWCrWX52m-v39OEJOk
  priority: 102
  providerName: Unpaywall
Title Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy Classification
URI https://ieeexplore.ieee.org/document/8654586
https://www.ncbi.nlm.nih.gov/pubmed/30835231
https://www.proquest.com/docview/2333727017
https://www.proquest.com/docview/2188210664
https://pubmed.ncbi.nlm.nih.gov/PMC7193672
https://www.ncbi.nlm.nih.gov/pmc/articles/7193672
UnpaywallVersion submittedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2208
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ4K98LExCIwpSDwB7hLbtePHDTGViQ4EVBpPkeM4rKNKp9EIjb-eOyeNKJsQT40Ut9L1zr7fffh3AC8KXjorTcYqYTWT3kuWOSOYEtr4VDpufWD7PFGjiTw-HZ6uwev-Loz3PjSf-QE9hlp-OXcNpcr2M0VlHrUO6zpT7V2tPp8SBkiEcVwcHxhuRNkVMdPE7B8fjt5RH5cZcINey2QrbijMVbkJYl7vlLzT1Bf26qedzf5wQ0f3YLwUoO0--T5oFsXA_fqL2_F_JbwPdzs8Gh-0BvQA1ny9BbfHXcV9CzYJjbZkztswCdd12YfivD0m2SH6wDL-ZMspXW6OCU82lz7-HIbroMZjhMTxe08ZuXiMiP8b0XtcxWESJ_UoBbN4CJOjt1_ejFg3l4E5KfWCcXSsSVphJKSIXYYULPDgwA9r_bC0aemSKnNKVHh4CEcO0KfDIpFea1FZJXZgo57X_jHEGC1lvMxMlialHMrCJibx1thCSO5K6SJIlmrKXUdaTrMzZnkIXhKTk2Zz0mzeaTaCl_1XLlrGjn8t3iYl9Au7_z-C3aUt5N2e_pFzIQSiPTzCInjev8bdSCUWW_t5g2tSjFgwylYygket6fS_LQLaFWkEesWo-gXE9L36pp6eBcZvjTBbaR7Bq978rsl2XpxNV2R7crNsT2GTU84gpJF2YWNx2fhnCKwWxV7YUXtwa3Ly8eDrbxBIH8Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIbG9DNiABQYYiSfAXWI7H35kiKkb7ZBglfYWOY7DOqp0Go3Q-Ou5c9KIsgnx1EhxK13v7Pvdh38H8LoQpTVKZ7ySJuXKOcUzqyVPZKpdpKwwzrN9niTDiTo-i8_W4F1_F8Y555vP3IAefS2_nNuGUmX7WUJlnuQO3I2VUnF7W6vPqPgREn4gl8AHjltRdWXMKNT7xwfDI-rk0gOh0W_pbMUR-ckqt4HMm72SG019aa5_mtnsD0d0eB_GSxHa_pPvg2ZRDOyvv9gd_1fGB7DVIVL2vjWhh7Dm6m24N-5q7tuwSXi0pXPegYm_sMs_FxftQckP0AuW7Ispp3S9mRGibK4c--rH66DOGYJiNnKUk2NjxPzfiODjmvlZnNSl5A3jEUwOP55-GPJuMgO3SqULLtC1hlGFsVBC_DKkYolHB34Y4-LSRKUNq8wmssLjQ1pygS6Ki1C5NJWVSeRjWK_ntdsFhvFSJspMZ1FYqlgVJtShM9oUUglbKhtAuFRTbjvacpqeMct9-BLqnDSbk2bzTrMBvOm_ctlydvxr8Q4poV_Y_f8B7C1tIe929Y9cSCkR7-EhFsCr_jXuRyqymNrNG1wTYcyCcXaiAnjSmk7_29LjXRkFkK4YVb-AuL5X39TTc8_5nSLQTlIRwNve_G7IdlGcT1dke3q7bC9hY3g6HuWjo5NPz2BTUAbBJ5X2YH1x1bjnCLMWxQu_u34DLkUhYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemmwS88DXYCgMViSdQe0mTps3jNm06JjbQ4KTxVKVput24dadxFRp_PU6aVhxDSHtqpbiVLDv2z7FjA7wtk0orLvOoZiqLuDE8yrVkkWCZNJTrRBnX7fNYTKb88DQ9XQPa34VxRfu6nMXN_DJuZueutnJxqcd9ndg4Q8ghMrS66yJF-D2C9enx551vdogcFSh16oYfdu8JyX0mkxI5vijPZ7aYS8aJRNcl8xVf5Iar_Atn3i6XvN82C3XzU83nf_iig0dw0nPRlaB8j9tlGetffzV4vBObj-GhR6bhTrf0BNZM8xTuHfnc-wZM3V3d6FN50dnIaBcdYBWeqGpmbzaHFky21yb84ibroLhDxMPhR2OP48IjhPtntrfHTejGcNoCJacTz2B6sP91bxL5oQyR5jxbRgl6VUJrDIOEbS1jpcvQauBDKZNWilaa1LkWrEbLwbT1foamJeEmy1itBHsOo-aqMVsQYqiUJ1Uuc0oqnvJSEUmMkqpkPNEV1wGQXjyF9h3L7eCMeeEiFyKLw93Jh8JKtPASDeDd8Mmia9fxP-INK_OBMBc2iygC2O51oPAb-keRMMYQ6qH9CuDNsIxb0eZXVGOuWqShGK5giC14AJudygz_Zg7qMhpAtqJMA4Ft8726gmrh2n17TQjg_aB2t3izqr3C24s7Ub-EB4k9R3BHS9swWl635hWCrWX52m-v39OEJOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+based+radiomic+feature+selection+for+lesion+malignancy+classification&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Zhou%2C+Zhiguo&rft.au=Li%2C+Shulong&rft.au=Qin%2C+Genggeng&rft.au=Folkert%2C+Michael&rft.date=2020-01-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=24&rft.issue=1&rft.spage=194&rft.epage=204&rft_id=info:doi/10.1109%2FJBHI.2019.2902298&rft_id=info%3Apmid%2F30835231&rft.externalDocID=PMC7193672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon