Multi-Objective-Based Radiomic Feature Selection for Lesion Malignancy Classification

Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all ra...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 1; pp. 194 - 204
Main Authors Zhou, Zhiguo, Li, Shulong, Qin, Genggeng, Folkert, Michael, Jiang, Steve, Wang, Jing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2019.2902298

Cover

More Information
Summary:Objective: accurately classifying the malignancy of lesions detected in a screening scan is critical for reducing false positives. Radiomics holds great potential to differentiate malignant from benign tumors by extracting and analyzing a large number of quantitative image features. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. Methods: this work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers sensitivity and specificity simultaneously as the objective functions during feature selection. For MO-FS, we developed a modified entropy-based termination criterion that stops the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning that uses the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, we developed an adaptive mutation operation to generate the mutation probability in MO-FS automatically. Results: we evaluated the MO-FS for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Conclusion:the experimental results demonstrated that the feature set selected by MO-FS achieved better classification performance than features selected by other commonly used methods. Significance: the proposed method is general and more effective radiomic feature selection strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2019.2902298