Investigation on the Sampling Frequency and Channel Number for Force Myography Based Hand Gesture Recognition

Force myography (FMG) is a method that uses pressure sensors to measure muscle contraction indirectly. Compared with the conventional approach utilizing myoelectric signals in hand gesture recognition, it is a valuable substitute. To achieve the aim of gesture recognition at minimum cost, it is nece...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 11; p. 3872
Main Authors Lei, Guangtai, Zhang, Shenyilang, Fang, Yinfeng, Wang, Yuxi, Zhang, Xuguang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 03.06.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21113872

Cover

More Information
Summary:Force myography (FMG) is a method that uses pressure sensors to measure muscle contraction indirectly. Compared with the conventional approach utilizing myoelectric signals in hand gesture recognition, it is a valuable substitute. To achieve the aim of gesture recognition at minimum cost, it is necessary to study the minimum sampling frequency and the minimal number of channels. For purpose of investigating the effect of sampling frequency and the number of channels on the accuracy of gesture recognition, a hardware system that has 16 channels has been designed for capturing forearm FMG signals with a maximum sampling frequency of 1 kHz. Using this acquisition equipment, a force myography database containing 10 subjects’ data has been created. In this paper, gesture accuracies under different sampling frequencies and channel’s number are obtained. Under 1 kHz sampling rate and 16 channels, four of five tested classifiers reach an accuracy up to about 99%. Other experimental results indicate that: (1) the sampling frequency of the FMG signal can be as low as 5 Hz for the recognition of static movements; (2) the reduction of channel number has a large impact on the accuracy, and the suggested channel number for gesture recognition is eight; and (3) the distribution of the sensors on the forearm would affect the recognition accuracy, and it is possible to improve the accuracy via optimizing the sensor position.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21113872