Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity
We study consistency and asymptotic normality of posterior distributions of the natural parameter for an exponential family when the dimension of the parameter grows with the sample size. Under certain growth restrictions on the dimension, we show that the posterior distributions concentrate in neig...
Saved in:
Published in | Journal of multivariate analysis Vol. 74; no. 1; pp. 49 - 68 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.07.2000
Elsevier |
Series | Journal of Multivariate Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0047-259X 1095-7243 |
DOI | 10.1006/jmva.1999.1874 |
Cover
Summary: | We study consistency and asymptotic normality of posterior distributions of the natural parameter for an exponential family when the dimension of the parameter grows with the sample size. Under certain growth restrictions on the dimension, we show that the posterior distributions concentrate in neighbourhoods of the true parameter and can be approximated by an appropriate normal distribution. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1006/jmva.1999.1874 |