Asymptotic Normality of Posterior Distributions for Exponential Families when the Number of Parameters Tends to Infinity

We study consistency and asymptotic normality of posterior distributions of the natural parameter for an exponential family when the dimension of the parameter grows with the sample size. Under certain growth restrictions on the dimension, we show that the posterior distributions concentrate in neig...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 74; no. 1; pp. 49 - 68
Main Author Ghosal, Subhashis
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.07.2000
Elsevier
SeriesJournal of Multivariate Analysis
Subjects
Online AccessGet full text
ISSN0047-259X
1095-7243
DOI10.1006/jmva.1999.1874

Cover

More Information
Summary:We study consistency and asymptotic normality of posterior distributions of the natural parameter for an exponential family when the dimension of the parameter grows with the sample size. Under certain growth restrictions on the dimension, we show that the posterior distributions concentrate in neighbourhoods of the true parameter and can be approximated by an appropriate normal distribution.
ISSN:0047-259X
1095-7243
DOI:10.1006/jmva.1999.1874