The NANOGrav 12.5-Year Data Set: Dispersion Measure Misestimations with Varying Bandwidths

Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observat...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 966; no. 1; pp. 95 - 106
Main Authors Sosa Fiscella, Sophia Valentina, Lam, Michael T., Arzoumanian, Zaven, Blumer, Harsha, Brook, Paul R., Cromartie, H. Thankful, DeCesar, Megan E., Demorest, Paul B., Dolch, Timothy, Ellis, Justin A., Ferdman, Robert D., Ferrara, Elizabeth C., Fonseca, Emmanuel, Garver-Daniels, Nate, Gentile, Peter A., Good, Deborah C., Jones, Megan L., Lorimer, Duncan R., Luo, Jing, Lynch, Ryan S., McLaughlin, Maura A., Ng, Cherry, Nice, David J., Pennucci, Timothy T., Pol, Nihan S., Ransom, Scott M., Spiewak, Renée, Stairs, Ingrid H., Stovall, Kevin, Swiggum, Joseph K., Vigeland, Sarah J.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.05.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad2858

Cover

More Information
Summary:Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22 μ s due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7 μ s. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches.
Bibliography:AAS48414
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad2858