Measuring potentially avoidable hospital readmissions

The objectives of this study were to develop a computerized method to screen for potentially avoidable hospital readmissions using routinely collected data and a prediction model to adjust rates for case mix. We studied hospital information system data of a random sample of 3,474 inpatients discharg...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical epidemiology Vol. 55; no. 6; pp. 573 - 587
Main Authors Halfon, Patricia, Eggli, Yves, van Melle, Guy, Chevalier, Julia, Wasserfallen, Jean-Blaise, Burnand, Bernard
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.06.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0895-4356
1878-5921
DOI10.1016/S0895-4356(01)00521-2

Cover

More Information
Summary:The objectives of this study were to develop a computerized method to screen for potentially avoidable hospital readmissions using routinely collected data and a prediction model to adjust rates for case mix. We studied hospital information system data of a random sample of 3,474 inpatients discharged alive in 1997 from a university hospital and medical records of those (1,115) readmitted within 1 year. The gold standard was set on the basis of the hospital data and medical records: all readmissions were classified as foreseen readmissions, unforeseen readmissions for a new affection, or unforeseen readmissions for a previously known affection. The latter category was submitted to a systematic medical record review to identify the main cause of readmission. Potentially avoidable readmissions were defined as a subgroup of unforeseen readmissions for a previously known affection occurring within an appropriate interval, set to maximize the chance of detecting avoidable readmissions. The computerized screening algorithm was strictly based on routine statistics: diagnosis and procedures coding and admission mode. The prediction was based on a Poisson regression model. There were 454 (13.1%) unforeseen readmissions for a previously known affection within 1 year. Fifty-nine readmissions (1.7%) were judged avoidable, most of them occurring within 1 month, which was the interval used to define potentially avoidable readmissions ( n = 174, 5.0%). The intra-sample sensitivity and specificity of the screening algorithm both reached approximately 96%. Higher risk for potentially avoidable readmission was associated with previous hospitalizations, high comorbidity index, and long length of stay; lower risk was associated with surgery and delivery. The model offers satisfactory predictive performance and a good medical plausibility. The proposed measure could be used as an indicator of inpatient care outcome. However, the instrument should be validated using other sets of data from various hospitals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0895-4356
1878-5921
DOI:10.1016/S0895-4356(01)00521-2