Skin-specific mechanisms of body fluid regulation in hypertension

Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]s...

Full description

Saved in:
Bibliographic Details
Published inClinical science (1979) Vol. 137; no. 3; pp. 239 - 250
Main Authors Chen, Jun Yu, Chew, Khai Syuen, Mary, Sheon, Boder, Philipp, Bagordo, Domenico, Rossi, Gian Paolo, Touyz, Rhian M., Delles, Christian, Rossitto, Giacomo
Format Journal Article
LanguageEnglish
Published England Portland Press Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0143-5221
1470-8736
1470-8736
DOI10.1042/CS20220609

Cover

More Information
Summary:Increasing evidence suggests excess skin Na+ accumulation in hypertension; however, the role of skin-specific mechanisms of local Na+/water regulation remains unclear. We investigated the association between measures of sweat and trans-epidermal water loss (TEWL) with Na+ content in the skin ([Na+]skin) and clinical characteristics in consecutive hypertensive patients. We obtained an iontophoretic pilocarpine-induced sweat sample, a skin punch biopsy for chemical analysis, and measures of TEWL from the upper limbs. Serum vascular endothelial growth factor-c (VEGF-c) and a reflectance measure of haemoglobin skin content served as surrogates of skin microvasculature. In our cohort (n = 90; age 21–86 years; females = 49%), sweat composition was independent of sex and BMI. Sweat Na+ concentration ([Na+]sweat) inversely correlated with [K+]sweat and was higher in patients on ACEIs/ARBs (P < 0.05). A positive association was found between [Na+]sweat and [Na+]skin, independent of sex, BMI, estimated Na+ intake and use of ACEi/ARBs (Padjusted = 0.025); both closely correlated with age (P < 0.01). Office DBP, but not SBP, inversely correlated with [Na+]sweat independent of other confounders (Padjusted = 0.03). Total sweat volume and Na+ loss were lower in patients with uncontrolled office BP (Padjusted < 0.005 for both); sweat volume also positively correlated with serum VEGF-c and TEWL. Lower TEWL was paralleled by lower skin haemoglobin content, which increased less after vasodilatory pilocarpine stimulation when BMI was higher (P = 0.010). In conclusion, measures of Na+ and water handling/regulation in the skin were associated with relevant clinical characteristics, systemic Na+ status and blood pressure values, suggesting a potential role of the skin in body-fluid homeostasis and therapeutic targeting of hypertension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0143-5221
1470-8736
1470-8736
DOI:10.1042/CS20220609