Generalized Zero-Shot Chest X-Ray Diagnosis Through Trait-Guided Multi-View Semantic Embedding With Self-Training

Zero-shot learning (ZSL) is one of the most promising avenues of annotation-efficient machine learning. In the era of deep learning, ZSL techniques have achieved unprecedented success. However, the developments of ZSL methods have taken place mostly for natural images. ZSL for medical images has rem...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 40; no. 10; pp. 2642 - 2655
Main Authors Paul, Angshuman, Shen, Thomas C., Lee, Sungwon, Balachandar, Niranjan, Peng, Yifan, Lu, Zhiyong, Summers, Ronald M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2021.3054817

Cover

More Information
Summary:Zero-shot learning (ZSL) is one of the most promising avenues of annotation-efficient machine learning. In the era of deep learning, ZSL techniques have achieved unprecedented success. However, the developments of ZSL methods have taken place mostly for natural images. ZSL for medical images has remained largely unexplored. We design a novel strategy for generalized zero-shot diagnosis of chest radiographs. In doing so, we leverage the potential of multi-view semantic embedding, a useful yet less-explored direction for ZSL. Our design also incorporates a self-training phase to tackle the problem of noisy labels alongside improving the performance for classes not seen during training. Through rigorous experiments, we show that our model trained on one dataset can produce consistent performance across test datasets from different sources including those with very different quality. Comparisons with a number of state-of-the-art techniques show the superiority of the proposed method for generalized zero-shot chest x-ray diagnosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2021.3054817