Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate
We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M*) in the CANDELS/GOODS-South field in the redshift range of . Our sample consists of galaxies, allowing us to probe galaxies with and/or . We use sample-mean BHAR to approxi...
Saved in:
Published in | The Astrophysical journal Vol. 842; no. 2; pp. 72 - 88 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.06.2017
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/aa7564 |
Cover
Summary: | We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M*) in the CANDELS/GOODS-South field in the redshift range of . Our sample consists of galaxies, allowing us to probe galaxies with and/or . We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M* have been estimated by the CANDELS team through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M*, and the BHAR-SFR and BHAR-M* relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M* than SFR. This result indicates that M* is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ( ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between and M* for local giant ellipticals and suggest that their is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher compared to dwarfs. |
---|---|
Bibliography: | Galaxies and Cosmology AAS03701 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aa7564 |