Verification measurements of an eMC algorithm using a 2D ion chamber array

The aim of this study was to assess the suitability of the Im'RT MatriXX 2D ion chamber array for performing verification measurements on the Varian Eclipse electron Monte Carlo (eMC) algorithm for a range of clinical energies (6, 12, and 20 MeV) on a Varian 2100iX linear accelerator. Firstly,...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied clinical medical physics Vol. 17; no. 5; pp. 320 - 328
Main Authors Wanklyn, Mark D., Kidane, Ghirmay, Crees, Liz
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 08.09.2016
Subjects
Online AccessGet full text
ISSN1526-9914
1526-9914
DOI10.1120/jacmp.v17i5.6150

Cover

More Information
Summary:The aim of this study was to assess the suitability of the Im'RT MatriXX 2D ion chamber array for performing verification measurements on the Varian Eclipse electron Monte Carlo (eMC) algorithm for a range of clinical energies (6, 12, and 20 MeV) on a Varian 2100iX linear accelerator. Firstly, the suitability of the MatriXX for measuring percentage depth doses (PDD) in water was assessed, including characterization of the inherent buildup found in the MatriXX. Secondly the suitability of the MatriXX for measuring dose distributions in homogeneous and heterogeneous phantoms was assessed using gamma analysis at 3%/3 mm. It was found that after adjusting the PDD curves for the inherent buildup, that the position of R50,D measured using the MatriXX agreed to within 1 mm to the PDDs generated using the eMC algorithm for all energies used in this study. Gamma analysis at 3%/3 mm showed very good agreement (>95%) for all cases in both homogeneous and heterogeneous phantoms. It was concluded that the Im'RT MatriXX is a suitable device for performing eMC verification and could potentially be used for routine energy checks of electron beams. PACS number(s): 87.55.km, 87.55.Qr
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1120/jacmp.v17i5.6150