An Explainable Deep Learning-Based Predictive Maintenance Solution for Air Compressor Condition Monitoring

Air compressors are vital across various sectors—automotive, manufacturing, buildings, and healthcare—as they provide pressurized air for air suspension systems in vehicles, supply power pneumatic machines throughout industrial production lines, and support non-clinical infrastructure within hospita...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 18; p. 5797
Main Authors Ciobotaru, Alexandru, Corches, Cosmina, Gota, Dan, Miclea, Liviu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.09.2025
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25185797

Cover

More Information
Summary:Air compressors are vital across various sectors—automotive, manufacturing, buildings, and healthcare—as they provide pressurized air for air suspension systems in vehicles, supply power pneumatic machines throughout industrial production lines, and support non-clinical infrastructure within hospital environments, including pneumatic control systems, isolation room pressurization, and laboratory equipment operation. Ensuring that such components are reliable is critical, as unexpected failures can disrupt facility functions and compromise patient safety. Predictive maintenance (PdM) has emerged as a key factor in enhancing the reliability and operational efficiency of medical devices by leveraging sensor data and artificial intelligence (AI)-based algorithms to detect component degradation before functional failures occur. In this paper, a predictive maintenance solution for condition monitoring and fault prediction for the exhaust valve, bearings, water pump, and radiator of an air compressor is presented, by comparing a hybrid deep neural network (DNN) as a feature extractor and a support vector machine (SVM) for condition classification: a pure DNN classifier as well as a standalone SVM model. Additionally, each model was trained and validated on three devices—NVIDIA T4 GPU, Raspberry Pi 4 Model B, and NVIDIA Jetson Nano—and performance reports in terms of latency, energy consumption, and CO2 emissions are presented. Moreover, three model agnostic explainable AI (XAI) methods were employed to increase the transparency of the hybrid model’s final decision: Shapley additive explanations (SHAP), local interpretable model-agnostic explanations (LIME) and partial dependence plots (PDP). The hybrid model achieves on average 98.71%, 99.25%, 98.78%, and 99.01% performance in terms of accuracy, precision, recall, and F1-score across all devices Additionally, the DNN baseline and SVM model achieve on average 93.2%, 88.33%, 90.45%, and 89.37%, as well as 93.34%, 88.11%, 95. 41%, and 91.62% performance in terms of accuracy, precision, recall, and F1-score across all devices. The integration of XAI methods within the PdM pipeline offers enhanced transparency, interpretability, and trustworthiness of predictive outcomes, thereby facilitating informed decision-making among maintenance personnel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25185797