Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice

Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 217; no. 2; pp. 552 - 557
Main Authors Chiu, Chai Hao, Choi, Jeongmin, Paszkowski, Uta
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.01.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.14936

Cover

More Information
Summary:Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0028-646X
1469-8137
1469-8137
DOI:10.1111/nph.14936