Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers
The rapid growth of high-throughput technologies has transformed biomedical research. With the increasing amount and complexity of data, scalability and reproducibility have become essential not just for experiments, but also for computational analysis. However, transforming data into information in...
Saved in:
| Published in | Nature methods Vol. 18; no. 10; pp. 1161 - 1168 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Nature Publishing Group US
01.10.2021
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1548-7091 1548-7105 1548-7105 |
| DOI | 10.1038/s41592-021-01254-9 |
Cover
| Summary: | The rapid growth of high-throughput technologies has transformed biomedical research. With the increasing amount and complexity of data, scalability and reproducibility have become essential not just for experiments, but also for computational analysis. However, transforming data into information involves running a large number of tools, optimizing parameters, and integrating dynamically changing reference data. Workflow managers were developed in response to such challenges. They simplify pipeline development, optimize resource usage, handle software installation and versions, and run on different compute platforms, enabling workflow portability and sharing. In this Perspective, we highlight key features of workflow managers, compare commonly used approaches for bioinformatics workflows, and provide a guide for computational and noncomputational users. We outline community-curated pipeline initiatives that enable novice and experienced users to perform complex, best-practice analyses without having to manually assemble workflows. In sum, we illustrate how workflow managers contribute to making computational analysis in biomedical research shareable, scalable, and reproducible.
This Perspective highlights workflow managers, which are useful for developing and managing complex bioinformatics pipelines. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1548-7091 1548-7105 1548-7105 |
| DOI: | 10.1038/s41592-021-01254-9 |