A POLYNOMIAL MODEL FOR THE DOUBLE-LOOP SPACE OF AN EVEN SPHERE

It is well known that $\varOmega^2S^{2n+1}$ is approximated by $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, the space of based holomorphic maps of degree $k$ from $S^2$ to $\mathbb{C}P^{n}$. In this paper we construct a space $G_{k}^{n}$ which is an analogue of $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, and prove...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 47; no. 1; pp. 155 - 162
Main Author Kamiyama, Yasuhiko
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2004
Cambridge University Press (CUP)
Subjects
Online AccessGet full text
ISSN0013-0915
1464-3839
1464-3839
DOI10.1017/S001309150300052X

Cover

More Information
Summary:It is well known that $\varOmega^2S^{2n+1}$ is approximated by $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, the space of based holomorphic maps of degree $k$ from $S^2$ to $\mathbb{C}P^{n}$. In this paper we construct a space $G_{k}^{n}$ which is an analogue of $\textrm{Rat}_{k}(\mathbb{C}P^{n})$, and prove that under the natural map $j_k:G_{k}^{n}\to\varOmega^2S^{2n}$, $G_{k}^{n}$ approximates $\varOmega^2S^{2n}$. AMS 2000 Mathematics subject classification: Primary 55P35
Bibliography:ark:/67375/6GQ-T2VSZS50-M
PII:S001309150300052X
ArticleID:00052
istex:9CB43B2E7559B5D467C271E34BA7C21E929C32DE
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0013-0915
1464-3839
1464-3839
DOI:10.1017/S001309150300052X