Circuits That Mediate Expression of Signaled Active Avoidance Converge in the Pedunculopontine Tegmentum
An innocuous sensory stimulus that reliably signals an upcoming aversive event can be conditioned to elicit locomotion to a safe location before the aversive outcome ensues. The neural circuits that mediate the expression of this signaled locomotor action, known as , have not been identified. While...
Saved in:
Published in | The Journal of neuroscience Vol. 39; no. 23; pp. 4576 - 4594 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
05.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.0049-19.2019 |
Cover
Summary: | An innocuous sensory stimulus that reliably signals an upcoming aversive event can be conditioned to elicit locomotion to a safe location before the aversive outcome ensues. The neural circuits that mediate the expression of this signaled locomotor action, known as
, have not been identified. While exploring sensorimotor midbrain circuits in mice of either sex, we found that excitation of GABAergic cells in the substantia nigra pars reticulata blocks signaled active avoidance by inhibiting cells in the pedunculopontine tegmental nucleus (PPT), not by inhibiting cells in the superior colliculus or thalamus. Direct inhibition of putative-glutamatergic PPT cells, excitation of GABAergic PPT cells, or excitation of GABAergic afferents in PPT, abolish signaled active avoidance. Conversely, excitation of putative-glutamatergic PPT cells, or inhibition of GABAergic PPT cells, can be tuned to drive avoidance responses. The PPT is an essential junction for the expression of signaled active avoidance gated by nigral and other synaptic afferents.
When a harmful situation is signaled by a sensory stimulus (e.g., street light), subjects typically learn to respond with active or passive avoidance responses that circumvent the threat. During signaled active avoidance behavior, subjects move away to avoid a threat signaled by a preceding innocuous stimulus. We identified a part of the midbrain essential to process the signal and avoid the threat. Inhibition of neurons in this area eliminates avoidance responses to the signal but preserves escape responses caused by presentation of the threat. The results highlight an essential part of the neural circuits that mediate signaled active avoidance behavior. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: M.A.C.-A. designed research; S.H., G.V.-F., V.R., and M.A.C.-A. performed research; S.H., G.V.-F., V.R., and M.A.C.-A. analyzed data; M.A.C.-A. wrote the first draft of the paper; S.H., G.V.-F., V.R., and M.A.C.-A. edited the paper; M.A.C.-A. wrote the paper. |
ISSN: | 0270-6474 1529-2401 1529-2401 |
DOI: | 10.1523/JNEUROSCI.0049-19.2019 |