Novel triphosphorylation polyurethane nanoparticles for blood-contacting biomaterials' coating
Improving hemocompatibility of biomaterials and devices contacting the human blood has been the subject of intensive research. In this study, we synthesized a novel excellent blood compatible polyurethane/sodium triphosphate nanoparticle (PU/STPP). Characterization of polyurethane/sodium triphosphat...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 4; no. 6; pp. 1116 - 1121 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-750X 2050-7518 2050-7518 |
DOI | 10.1039/c5tb01877c |
Cover
Summary: | Improving hemocompatibility of biomaterials and devices contacting the human blood has been the subject of intensive research. In this study, we synthesized a novel excellent blood compatible polyurethane/sodium triphosphate nanoparticle (PU/STPP). Characterization of polyurethane/sodium triphosphate (PU/STPP) nanoparticles was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and energy dispersive spectroscopy (EDS). Blood compatibility assessment of PU/STPP nanoparticles was performed by
in vitro
coagulation time, plasma clotting time, hemolysis rate, and red blood cell morphology tests. Cell compatibility evaluations of PU/STPP nanoparticles were obtained by MTT cell viability tests. The PU/STPP nanoparticles also were used to modify vascular prostheses with cosedimentation. Platelet adhesion tests showed that blood compatibility of vascular prostheses coated with PU/STPP nanoparticles is better than that of pure vascular prostheses.
Novel polyurethane/sodium triphosphate nanoparticles were synthesized to enhance the blood compatibility of blood-contacting materials. |
---|---|
Bibliography: | 10.1039/c5tb01877c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2050-750X 2050-7518 2050-7518 |
DOI: | 10.1039/c5tb01877c |