Radiomics in gliomas: clinical implications of computational modeling and fractal-based analysis

Radiomics is an emerging field that involves extraction and quantification of features from medical images. These data can be mined through computational analysis and models to identify predictive image biomarkers that characterize intra-tumoral dynamics throughout the course of treatment. This is p...

Full description

Saved in:
Bibliographic Details
Published inNeuroradiology Vol. 62; no. 7; pp. 771 - 790
Main Authors Jang, Kevin, Russo, Carlo, Di Ieva, Antonio
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0028-3940
1432-1920
1432-1920
DOI10.1007/s00234-020-02403-1

Cover

More Information
Summary:Radiomics is an emerging field that involves extraction and quantification of features from medical images. These data can be mined through computational analysis and models to identify predictive image biomarkers that characterize intra-tumoral dynamics throughout the course of treatment. This is particularly difficult in gliomas, where heterogeneity has been well established at a molecular level as well as visually in conventional imaging. Thus, acquiring clinically useful features remains difficult due to temporal variations in tumor dynamics. Identifying surrogate biomarkers through radiomics may provide a non-invasive means of characterizing biologic activities of gliomas. We present an extensive literature review of radiomics-based analysis, with a particular focus on computational modeling, machine learning, and fractal-based analysis in improving differential diagnosis and predicting clinical outcomes. Novel strategies in extracting quantitative features, segmentation methods, and their clinical applications are producing promising results. Moreover, we provide a detailed summary of the morphometric parameters that have so far been proposed as a means of quantifying imaging characteristics of gliomas. Newly emerging radiomic techniques via machine learning and fractal-based analyses holds considerable potential for improving diagnostic and prognostic accuracy of gliomas. Key points • Radiomic features can be mined through computational analysis to produce quantitative imaging biomarkers that characterize intra-tumoral dynamics throughout the course of treatment. • Surrogate image biomarkers identified through radiomics could enable a non-invasive means of characterizing biologic activities of gliomas. • With novel analytic algorithms, quantification of morphological or sub-regional tumor features to predict survival outcomes is producing promising results. • Quantifying intra-tumoral heterogeneity may improve grading and molecular sub-classifications of gliomas. • Computational fractal-based analysis of gliomas allows geometrical evaluation of tumor irregularities and complexity, leading to novel techniques for tumor segmentation, grading, and therapeutic monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0028-3940
1432-1920
1432-1920
DOI:10.1007/s00234-020-02403-1