Efficient Algorithms for Max-Weighted Point Sweep Coverage on Lines
As an important application of wireless sensor networks (WSNs), deployment of mobile sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian graph, the poin...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1457 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI
    
        19.02.2021
     MDPI AG  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s21041457 | 
Cover
| Summary: | As an important application of wireless sensor networks (WSNs), deployment of mobile sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian graph, the point sweep coverage problem of deploying the fewest sensors to periodically cover a set of PoIs is known to be Non-deterministic Polynomial Hard (NP-hard), even if all sensors have the same velocity. In this paper, we consider the problem of finding the set of PoIs on a line periodically covered by a given set of mobile sensors that has the maximum sum of weight. The problem is first proven NP-hard when sensors are with different velocities in this paper. Optimal and approximate solutions are also presented for sensors with the same and different velocities, respectively. For M sensors and N PoIs, the optimal algorithm for the case when sensors are with the same velocity runs in O(MN) time; our polynomial-time approximation algorithm for the case when sensors have a constant number of velocities achieves approximation ratio 12; for the general case of arbitrary velocities, 12α and 12(1−1/e) approximation algorithms are presented, respectively, where integer α≥2 is the tradeoff factor between time complexity and approximation ratio. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1424-8220 1424-8220  | 
| DOI: | 10.3390/s21041457 |