Non-genetic determinants of malignant clonal fitness at single-cell resolution
All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity...
Saved in:
Published in | Nature (London) Vol. 601; no. 7891; pp. 125 - 131 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.01.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-021-04206-7 |
Cover
Summary: | All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear
1
, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness
2
. Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (
Slpi
), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells
3
, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0028-0836 1476-4687 1476-4687 |
DOI: | 10.1038/s41586-021-04206-7 |