Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints

Path planning is an essential technology for lunar rover to achieve safe and efficient autonomous exploration mission, this paper proposes a learning-based end-to-end path planning algorithm for lunar rovers with safety constraints. Firstly, a training environment integrating real lunar surface terr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 3; p. 796
Main Authors Yu, Xiaoqiang, Wang, Ping, Zhang, Zexu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 25.01.2021
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21030796

Cover

More Information
Summary:Path planning is an essential technology for lunar rover to achieve safe and efficient autonomous exploration mission, this paper proposes a learning-based end-to-end path planning algorithm for lunar rovers with safety constraints. Firstly, a training environment integrating real lunar surface terrain data was built using the Gazebo simulation environment and a lunar rover simulator was created in it to simulate the real lunar surface environment and the lunar rover system. Then an end-to-end path planning algorithm based on deep reinforcement learning method is designed, including state space, action space, network structure, reward function considering slip behavior, and training method based on proximal policy optimization. In addition, to improve the generalization ability to different lunar surface topography and different scale environments, a variety of training scenarios were set up to train the network model using the idea of curriculum learning. The simulation results show that the proposed planning algorithm can successfully achieve the end-to-end path planning of the lunar rover, and the path generated by the proposed algorithm has a higher safety guarantee compared with the classical path planning algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21030796