Compressive Image Reconstruction in Reduced Union of Subspaces

We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light‐fields. The algorithm relies on a learning‐based basis representation. We train an ensemble of intrinsically two‐dimensional (2D)...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 34; no. 2; pp. 33 - 44
Main Authors Miandji, Ehsan, Kronander, Joel, Unger, Jonas
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.05.2015
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
1467-8659
DOI10.1111/cgf.12539

Cover

Abstract We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light‐fields. The algorithm relies on a learning‐based basis representation. We train an ensemble of intrinsically two‐dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K‐SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light‐fields). We show that our method outperforms state‐of‐the‐art algorithms in computer graphics and image processing literature.
AbstractList We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light‐fields. The algorithm relies on a learning‐based basis representation. We train an ensemble of intrinsically two‐dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K‐SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light‐fields). We show that our method outperforms state‐of‐the‐art algorithms in computer graphics and image processing literature.
Author Miandji, Ehsan
Kronander, Joel
Unger, Jonas
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Miandji
  fullname: Miandji, Ehsan
  email: ehsan.miandji@liu.se
  organization: Linköping University, Sweden
– sequence: 2
  givenname: Joel
  surname: Kronander
  fullname: Kronander, Joel
  organization: Linköping University, Sweden
– sequence: 3
  givenname: Jonas
  surname: Unger
  fullname: Unger, Jonas
  organization: Linköping University, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119639$$DView record from Swedish Publication Index
BookMark eNp9kE1vEzEQhi3USqSlB_7BSlwAadtx1p8XpDbQtFIEUqGUm-X1eiOXzXqx14T8e5ym6iEqzMG2Rs878jNH6KD3vUXoNYZTnOvMLNtTPKWVfIEmmDBeCkblAZoAzm8OlL5ERzHeAwDhjE7Qh5lfDcHG6H7b4nqll7a4scb3cQzJjM73hetzp0nGNsVtv234tvia6jhoY-MrdNjqLtqTx_sY3V5--ja7Khdf5tez80VpCMGy1GIKDQgjWkMJAdAtptYSJutGGmBCaD5luJFQ66aCpqq5lFAZ1tIG1wJkdYze7-amftCbte46NQS30mGjMKitucrm6sE8w-UOjms7pPqJ9Nqpj-77ufJhqTqXck6yB_7tjh-C_5VsHNXKRWO7TvfWp6gw5wLyQUhG3-yh9z6FPqsrzCRgQXNl6mxHmeBjDLZVxo16u80xaNc9--V3e4n_6T1OX7vObv4Nqtn8cm8hLo72z1NCh5-K8YpTdfd5ru7mi-nFgl-pH9VfZz2yKw
CitedBy_id crossref_primary_10_1109_TCI_2021_3077131
crossref_primary_10_1016_j_cviu_2017_06_009
crossref_primary_10_1111_cgf_12819
crossref_primary_10_1109_TVCG_2017_2722414
crossref_primary_10_1177_1748301816673074
crossref_primary_10_1007_s00034_017_0602_x
crossref_primary_10_1111_cgf_13835
crossref_primary_10_1016_j_image_2020_116087
crossref_primary_10_1145_3269980
crossref_primary_10_1109_TCI_2021_3053702
crossref_primary_10_1109_TII_2020_3025182
crossref_primary_10_1109_ACCESS_2021_3059887
crossref_primary_10_1109_TCI_2021_3132191
crossref_primary_10_1109_TVCG_2024_3355200
crossref_primary_10_1109_ACCESS_2022_3168362
Cites_doi 10.1214/009053604000000067
10.1109/TIP.2009.2034991
10.1109/JPROC.2009.2038076
10.1109/TIP.2006.881969
10.1145/1618452.1618486
10.1109/TIP.2011.2160072
10.1145/2010324.1964950
10.1109/TSP.2009.2016892
10.1109/TIP.2009.2022459
10.1109/LSP.2009.2017817
10.1145/2542355.2542385
10.1109/TVCG.2010.46
10.1109/TIP.2006.888330
10.1109/TIT.2006.871582
10.1145/1477926.1477929
10.1109/TSP.2011.2157912
10.1109/TIP.2011.2165289
10.1109/TIT.2011.2165821
10.1109/TIP.2011.2176743
10.1109/TSP.2012.2187642
10.1109/TPAMI.2012.39
10.1109/TSP.2006.881199
10.1109/TSP.2010.2044837
10.1145/258734.258775
10.1111/j.2517-6161.1996.tb02080.x
10.1145/2461912.2461914
10.1016/j.crma.2008.03.014
10.1109/TSP.2008.2007606
10.1145/1073204.1073224
10.1109/TIP.2007.911828
10.1111/j.1467-8659.2010.01731.x
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ADTOC
UNPAY
DOI 10.1111/cgf.12539
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList

CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 44
ExternalDocumentID oai:DiVA.org:liu-119639
oai_DiVA_org_liu_119639
3721827801
10_1111_cgf_12539
CGF12539
ark_67375_WNG_WGL2BL7H_X
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
WRC
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c4419-a820d08c8fc54400af15ee469bd9c0688a7261d90bad30d3b79903c6f5d1b8093
IEDL.DBID DR2
ISSN 0167-7055
1467-8659
IngestDate Wed Aug 20 00:09:47 EDT 2025
Thu Aug 21 06:12:31 EDT 2025
Fri Sep 05 03:35:36 EDT 2025
Sun Sep 07 03:42:06 EDT 2025
Wed Oct 01 03:05:02 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Wed Jan 22 16:24:47 EST 2025
Sun Sep 21 06:17:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4419-a820d08c8fc54400af15ee469bd9c0688a7261d90bad30d3b79903c6f5d1b8093
Notes Supporting InformationSupporting Information
ArticleID:CGF12539
istex:719C6E09B9806C60A2BBFDDD910E24F84661E5CB
ark:/67375/WNG-WGL2BL7H-X
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119639
PQID 1690185555
PQPubID 30877
PageCount 12
ParticipantIDs unpaywall_primary_10_1111_cgf_12539
swepub_primary_oai_DiVA_org_liu_119639
proquest_miscellaneous_1778017744
proquest_journals_1690185555
crossref_citationtrail_10_1111_cgf_12539
crossref_primary_10_1111_cgf_12539
wiley_primary_10_1111_cgf_12539_CGF12539
istex_primary_ark_67375_WNG_WGL2BL7H_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Gleichman S., Eldar Y.: Blind compressed sensing. IEEE Transactions on Information Theory 57, 10 (2011), 6958-6975. 7
Marwah K., Wetzstein G., Bando Y., Raskar R.: Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Transactions on Graphics (Proc. of SIGGRAPH) 32, 4 (2013), 46:1-46:12. 1, 3, 7, 10, 11
Sprechmann P., Ramirez I., Sapiro G., Eldar Y.: C-hilasso: A collaborative hierarchical sparse modeling framework. IEEE Transactions on Signal Processing 59, 9 (2011), 4183-4198. 6
Sen P., Darabi S.: Compressive rendering: A rendering application of compressed sensing. IEEE Transactions on Visualization and Computer Graphics 17, 4 (2011), 487-499. 1, 7, 8
Takeda H., Farsiu S., Milanfar P.: Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing 16, 2 (2007), 349-366. 7
Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (April 2006), 1289-1306. 1
Overbeck R.S., Donner C., Ramamoorthi R.: Adaptive wavelet rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia) 28, 5 (2009), 140:1-140:12. 7
Baraniuk R., Cevher V., Wakin M.: Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective. Proceedings of the IEEE 98, 6 (2010), 959-971. 2, 6
Rivenson Y., Stern A.: Compressed imaging with a separable sensing operator. IEEE Signal Processing Letters 16, 6 (2009), 449-452. 4
Zhou M., Chen H., Paisley J., Ren L., Li L., Xing Z., Dunson D., Sapiro G., Carin L.: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing 21, 1 (2012), 130-144. 10
Tibshirani R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58 (1994), 267-288. 4
Duarte M., Baraniuk R.: Kronecker compressive sensing. IEEE Transactions on Image Processing 21, 2 (2012), 494-504. 4
Elad M., Aharon M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15, 12 (2006), 3736-3745. 6, 7
Aharon M., Elad M., Bruckstein A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54, 11 (2006), 4311-4322. 3, 4, 6, 7, 8
Zelnik-Manor L., Rosenblum K., Eldar Y.: Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing 60, 5 (2012), 2386-2395. 2, 6
Mairal J., Elad M., Sapiro G.: Sparse representation for color image restoration. IEEE Transactions on Image Processing 17, 1 (2008), 53-69. 8
Candès E. J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346, 9-10 (2008), 589-592. 1
Eldar Y., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing 58, 6 (2010), 3042-3054. 2, 6
Gurumoorthy K.S., Rajwade A., Banerjee A., Rangarajan A.: A method for compact image representation using sparse matrix and tensor projections onto exemplar orthonormal bases. IEEE Transactions on Image Processing 19, 2 (2010), 322-334. 3
Wang H., Wu Q., Shi L., Yu Y., Ahuja N.: Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Transactions on Graphics (Proc. of SIGGRAPH) 24, 3 (2005), 527-535. 3
Mohimani H., Babaie-Zadeh M., Jutten C.: A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm. IEEE Transactions on Signal Processing 57, 1 (2009), 289-301. 2, 7
Wright S., Nowak R., Figueiredo M.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57, 7 (2009), 2479-2493. 2, 11
Efron B., Hastie T., Johnstone I., Tibshirani R.: Least angle regression. Annals of Statistics 32, 2 (2004), 407-499. 2
Peers P., Mahajan D.K., Lamond B., Ghosh A., Matusik W., Ramamoorthi R., Debevec P.: Compressive light transport sensing. ACM Transactions on Graphics 28, 1 (2009), 3:1-3:18. 1, 11
Liu J., Musialski P., Wonka P., Ye J.: Tensor completion for estimating missing values in visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 208-220. 10
Yu G., Sapiro G., Mallat S.: Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing 21, 5 (2012), 2481-2499. 10
Duarte-Carvajalino J., Sapiro G.: Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing 18, 7 (2009), 1395-1408. 5
Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light field reconstruction for rendering distribution effects. ACM Transactions on Graphics (Proc. of SIGGRAPH) 30, 4 (2011), 55:1-55:12. 7
Sen P., Darabi S.: Compressive estimation for signal integration in rendering. Computer Graphics Forum (Proc. of EGSR) 29, 4 (2010), 1355-1363. 1
2012; 60
2010; 98
2006; 52
2010; 58
2010; 19
2006; 54
2006; 15
2008; 17
2011; 30
1997
1995
2011; 57
2008; 346
2011; 59
2011; 17
2005; 24
2009; 28
2007; 16
2004; 32
2009; 57
2013; 32
2013; 35
2010; 29
1994; 58
2013
2012; 21
2009; 16
2009; 18
Veach E. (e_1_2_14_27_2) 1995
e_1_2_14_30_2
e_1_2_14_10_2
e_1_2_14_33_2
e_1_2_14_12_2
e_1_2_14_31_2
e_1_2_14_11_2
e_1_2_14_32_2
e_1_2_14_14_2
e_1_2_14_13_2
e_1_2_14_16_2
e_1_2_14_15_2
e_1_2_14_28_2
e_1_2_14_29_2
e_1_2_14_5_2
e_1_2_14_4_2
e_1_2_14_7_2
e_1_2_14_6_2
e_1_2_14_9_2
e_1_2_14_8_2
Tibshirani R. (e_1_2_14_26_2) 1994; 58
e_1_2_14_3_2
e_1_2_14_2_2
e_1_2_14_22_2
e_1_2_14_23_2
e_1_2_14_20_2
e_1_2_14_21_2
e_1_2_14_24_2
e_1_2_14_25_2
e_1_2_14_18_2
e_1_2_14_17_2
e_1_2_14_19_2
References_xml – reference: Mairal J., Elad M., Sapiro G.: Sparse representation for color image restoration. IEEE Transactions on Image Processing 17, 1 (2008), 53-69. 8
– reference: Efron B., Hastie T., Johnstone I., Tibshirani R.: Least angle regression. Annals of Statistics 32, 2 (2004), 407-499. 2
– reference: Rivenson Y., Stern A.: Compressed imaging with a separable sensing operator. IEEE Signal Processing Letters 16, 6 (2009), 449-452. 4
– reference: Sprechmann P., Ramirez I., Sapiro G., Eldar Y.: C-hilasso: A collaborative hierarchical sparse modeling framework. IEEE Transactions on Signal Processing 59, 9 (2011), 4183-4198. 6
– reference: Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (April 2006), 1289-1306. 1
– reference: Wang H., Wu Q., Shi L., Yu Y., Ahuja N.: Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Transactions on Graphics (Proc. of SIGGRAPH) 24, 3 (2005), 527-535. 3
– reference: Eldar Y., Kuppinger P., Bolcskei H.: Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing 58, 6 (2010), 3042-3054. 2, 6
– reference: Marwah K., Wetzstein G., Bando Y., Raskar R.: Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Transactions on Graphics (Proc. of SIGGRAPH) 32, 4 (2013), 46:1-46:12. 1, 3, 7, 10, 11
– reference: Sen P., Darabi S.: Compressive estimation for signal integration in rendering. Computer Graphics Forum (Proc. of EGSR) 29, 4 (2010), 1355-1363. 1
– reference: Liu J., Musialski P., Wonka P., Ye J.: Tensor completion for estimating missing values in visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 208-220. 10
– reference: Zhou M., Chen H., Paisley J., Ren L., Li L., Xing Z., Dunson D., Sapiro G., Carin L.: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing 21, 1 (2012), 130-144. 10
– reference: Gurumoorthy K.S., Rajwade A., Banerjee A., Rangarajan A.: A method for compact image representation using sparse matrix and tensor projections onto exemplar orthonormal bases. IEEE Transactions on Image Processing 19, 2 (2010), 322-334. 3
– reference: Yu G., Sapiro G., Mallat S.: Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing 21, 5 (2012), 2481-2499. 10
– reference: Overbeck R.S., Donner C., Ramamoorthi R.: Adaptive wavelet rendering. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia) 28, 5 (2009), 140:1-140:12. 7
– reference: Candès E. J.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346, 9-10 (2008), 589-592. 1
– reference: Baraniuk R., Cevher V., Wakin M.: Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective. Proceedings of the IEEE 98, 6 (2010), 959-971. 2, 6
– reference: Wright S., Nowak R., Figueiredo M.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57, 7 (2009), 2479-2493. 2, 11
– reference: Gleichman S., Eldar Y.: Blind compressed sensing. IEEE Transactions on Information Theory 57, 10 (2011), 6958-6975. 7
– reference: Lehtinen J., Aila T., Chen J., Laine S., Durand F.: Temporal light field reconstruction for rendering distribution effects. ACM Transactions on Graphics (Proc. of SIGGRAPH) 30, 4 (2011), 55:1-55:12. 7
– reference: Sen P., Darabi S.: Compressive rendering: A rendering application of compressed sensing. IEEE Transactions on Visualization and Computer Graphics 17, 4 (2011), 487-499. 1, 7, 8
– reference: Duarte-Carvajalino J., Sapiro G.: Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing 18, 7 (2009), 1395-1408. 5
– reference: Takeda H., Farsiu S., Milanfar P.: Kernel regression for image processing and reconstruction. IEEE Transactions on Image Processing 16, 2 (2007), 349-366. 7
– reference: Duarte M., Baraniuk R.: Kronecker compressive sensing. IEEE Transactions on Image Processing 21, 2 (2012), 494-504. 4
– reference: Zelnik-Manor L., Rosenblum K., Eldar Y.: Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing 60, 5 (2012), 2386-2395. 2, 6
– reference: Mohimani H., Babaie-Zadeh M., Jutten C.: A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm. IEEE Transactions on Signal Processing 57, 1 (2009), 289-301. 2, 7
– reference: Peers P., Mahajan D.K., Lamond B., Ghosh A., Matusik W., Ramamoorthi R., Debevec P.: Compressive light transport sensing. ACM Transactions on Graphics 28, 1 (2009), 3:1-3:18. 1, 11
– reference: Aharon M., Elad M., Bruckstein A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54, 11 (2006), 4311-4322. 3, 4, 6, 7, 8
– reference: Tibshirani R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58 (1994), 267-288. 4
– reference: Elad M., Aharon M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15, 12 (2006), 3736-3745. 6, 7
– volume: 60
  start-page: 2386
  issue: 5
  year: 2012
  end-page: 2395
  article-title: Dictionary optimization for block‐sparse representations
  publication-title: IEEE Transactions on Signal Processing
– volume: 57
  start-page: 6958
  issue: 10
  year: 2011
  end-page: 6975
  article-title: Blind compressed sensing
  publication-title: IEEE Transactions on Information Theory
– volume: 35
  start-page: 208
  issue: 1
  year: 2013
  end-page: 220
  article-title: Tensor completion for estimating missing values in visual data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 65
  year: 1997
  end-page: 76
– volume: 58
  start-page: 3042
  issue: 6
  year: 2010
  end-page: 3054
  article-title: Block‐sparse signals: Uncertainty relations and efficient recovery
  publication-title: IEEE Transactions on Signal Processing
– volume: 57
  start-page: 289
  issue: 1
  year: 2009
  end-page: 301
  article-title: A fast approach for overcomplete sparse decomposition based on smoothed ℓ norm
  publication-title: IEEE Transactions on Signal Processing
– volume: 28
  start-page: 140:1
  issue: 5
  year: 2009
  end-page: 140:12
  article-title: Adaptive wavelet rendering
  publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH Asia)
– volume: 19
  start-page: 322
  issue: 2
  year: 2010
  end-page: 334
  article-title: A method for compact image representation using sparse matrix and tensor projections onto exemplar orthonormal bases
  publication-title: IEEE Transactions on Image Processing
– volume: 57
  start-page: 2479
  issue: 7
  year: 2009
  end-page: 2493
  article-title: Sparse reconstruction by separable approximation
  publication-title: IEEE Transactions on Signal Processing
– volume: 98
  start-page: 959
  issue: 6
  year: 2010
  end-page: 971
  article-title: Low‐dimensional models for dimensionality reduction and signal recovery: A geometric perspective
  publication-title: Proceedings of the IEEE
– volume: 28
  start-page: 3:1
  issue: 1
  year: 2009
  end-page: 3:18
  article-title: Compressive light transport sensing
  publication-title: ACM Transactions on Graphics
– volume: 17
  start-page: 487
  issue: 4
  year: 2011
  end-page: 499
  article-title: Compressive rendering: A rendering application of compressed sensing
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 18
  start-page: 1395
  issue: 7
  year: 2009
  end-page: 1408
  article-title: Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization
  publication-title: IEEE Transactions on Image Processing
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  end-page: 2499
  article-title: Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity
  publication-title: IEEE Transactions on Image Processing
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  article-title: K‐SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Transactions on Signal Processing
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  end-page: 3745
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Transactions on Image Processing
– start-page: 24:1
  year: 2013
  end-page: 24:4
– start-page: 145
  year: 1995
  end-page: 167
– volume: 16
  start-page: 349
  issue: 2
  year: 2007
  end-page: 366
  article-title: Kernel regression for image processing and reconstruction
  publication-title: IEEE Transactions on Image Processing
– volume: 21
  start-page: 494
  issue: 2
  year: 2012
  end-page: 504
  article-title: Kronecker compressive sensing
  publication-title: IEEE Transactions on Image Processing
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  end-page: 499
  article-title: Least angle regression
  publication-title: Annals of Statistics
– volume: 59
  start-page: 4183
  issue: 9
  year: 2011
  end-page: 4198
  article-title: C‐hilasso: A collaborative hierarchical sparse modeling framework
  publication-title: IEEE Transactions on Signal Processing
– volume: 21
  start-page: 130
  issue: 1
  year: 2012
  end-page: 144
  article-title: Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images
  publication-title: IEEE Transactions on Image Processing
– volume: 32
  start-page: 46:1
  issue: 4
  year: 2013
  end-page: 46:12
  article-title: Compressive light field photography using overcomplete dictionaries and optimized projections
  publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH)
– volume: 30
  start-page: 55:1
  issue: 4
  year: 2011
  end-page: 55:12
  article-title: Temporal light field reconstruction for rendering distribution effects
  publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH)
– volume: 16
  start-page: 449
  issue: 6
  year: 2009
  end-page: 452
  article-title: Compressed imaging with a separable sensing operator
  publication-title: IEEE Signal Processing Letters
– volume: 17
  start-page: 53
  issue: 1
  year: 2008
  end-page: 69
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Transactions on Image Processing
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
– volume: 29
  start-page: 1355
  issue: 4
  year: 2010
  end-page: 1363
  article-title: Compressive estimation for signal integration in rendering
  publication-title: Computer Graphics Forum (Proc. of EGSR)
– volume: 58
  start-page: 267
  year: 1994
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 346
  start-page: 589
  issue: 9‐10
  year: 2008
  end-page: 592
  article-title: The restricted isometry property and its implications for compressed sensing
  publication-title: Comptes Rendus Mathematique
– volume: 24
  start-page: 527
  issue: 3
  year: 2005
  end-page: 535
  article-title: Out‐of‐core tensor approximation of multi‐dimensional matrices of visual data
  publication-title: ACM Transactions on Graphics (Proc. of SIGGRAPH)
– ident: e_1_2_14_9_2
  doi: 10.1214/009053604000000067
– ident: e_1_2_14_12_2
  doi: 10.1109/TIP.2009.2034991
– ident: e_1_2_14_3_2
  doi: 10.1109/JPROC.2009.2038076
– ident: e_1_2_14_8_2
  doi: 10.1109/TIP.2006.881969
– ident: e_1_2_14_19_2
  doi: 10.1145/1618452.1618486
– ident: e_1_2_14_32_2
  doi: 10.1109/TIP.2011.2160072
– ident: e_1_2_14_13_2
  doi: 10.1145/2010324.1964950
– ident: e_1_2_14_29_2
  doi: 10.1109/TSP.2009.2016892
– ident: e_1_2_14_6_2
  doi: 10.1109/TIP.2009.2022459
– ident: e_1_2_14_21_2
  doi: 10.1109/LSP.2009.2017817
– ident: e_1_2_14_17_2
  doi: 10.1145/2542355.2542385
– ident: e_1_2_14_23_2
  doi: 10.1109/TVCG.2010.46
– ident: e_1_2_14_25_2
  doi: 10.1109/TIP.2006.888330
– ident: e_1_2_14_7_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_14_20_2
  doi: 10.1145/1477926.1477929
– ident: e_1_2_14_24_2
  doi: 10.1109/TSP.2011.2157912
– ident: e_1_2_14_5_2
  doi: 10.1109/TIP.2011.2165289
– ident: e_1_2_14_11_2
  doi: 10.1109/TIT.2011.2165821
– ident: e_1_2_14_31_2
  doi: 10.1109/TIP.2011.2176743
– ident: e_1_2_14_33_2
  doi: 10.1109/TSP.2012.2187642
– ident: e_1_2_14_14_2
  doi: 10.1109/TPAMI.2012.39
– ident: e_1_2_14_2_2
  doi: 10.1109/TSP.2006.881199
– ident: e_1_2_14_10_2
  doi: 10.1109/TSP.2010.2044837
– ident: e_1_2_14_28_2
  doi: 10.1145/258734.258775
– volume: 58
  start-page: 267
  year: 1994
  ident: e_1_2_14_26_2
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 145
  volume-title: Focus on Computer Graphics
  year: 1995
  ident: e_1_2_14_27_2
– ident: e_1_2_14_18_2
  doi: 10.1145/2461912.2461914
– ident: e_1_2_14_4_2
  doi: 10.1016/j.crma.2008.03.014
– ident: e_1_2_14_15_2
  doi: 10.1109/TSP.2008.2007606
– ident: e_1_2_14_30_2
  doi: 10.1145/1073204.1073224
– ident: e_1_2_14_16_2
  doi: 10.1109/TIP.2007.911828
– ident: e_1_2_14_22_2
  doi: 10.1111/j.1467-8659.2010.01731.x
SSID ssj0004765
Score 2.252138
Snippet We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations...
SourceID unpaywall
swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
Analysis
and texture
Animation
Categories and Subject Descriptors (according to ACM CCS)
compressed sensing
Computer graphics
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism-Color
I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism—Color, shading, shadowing, and texture
Image processing systems
Image reconstruction
light field imaging
Representations
shading
shadowing
Studies
Subspaces
Two dimensional
Unions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B8gB94EYYCjKHqr448r3eSIBCIQmoRDwQGp5We1ZRjR21TTh-PbO-2opDYMmStR4fuzO78409-y3As4AIGaBj9qKMGw8tJPUyGUsvNIEhIgt5QO1E4fezdDqP3y2SxdmnC2y-Jskdg80y3-iXWPIc92EhiuGJHubL9VAtN9wLrOnQy9BHF5rEPejPZx9Gn1smb8sRU88rwjE4TWjDKWRzeOShGaBXt6uDn_NEfduo3y7CzJo6dAuurIsV__6V5_lFBFu5oPF1WLQTeerMk6PB-lQM5I9feR3_t3Y34FoDS91RbUc34ZIubsHWObLC2_DCDh1V1uxGu2-_4Djk2tj1jIHWXRZYotBWlItQFgtK49qBaWXTvu7AfPzm497Ua1Zf8CRCJOpxxAbKz2RmZBJjT-cmSLTGaFooKu1SNZxg9KWoL7iKfBUJgo4tkqlJVCAyn0Z3oVeUhb4HLg91wmWGSFOlMRGE08w3EV5uQuqbMHZgt9UEkw01uV0hI2dtiIJKY5XSHHjSia5qPo7fCe1U6uwk-PGRTWAjCTuYTdjBZD98tU-mbOHAdqtv1vTdE2Z_HCKKwc2Bx91p7HX2VwovdLlGGULQtWOF8N13ajvpHmYJu18vP41YeXzIUKOsVqYDTzs7-tur71YW9mcJtjcZVwf3_-mGD-AqYrykztHchh7ahH6IOOpUPGr6zE-ceBoi
  priority: 102
  providerName: Unpaywall
Title Compressive Image Reconstruction in Reduced Union of Subspaces
URI https://api.istex.fr/ark:/67375/WNG-WGL2BL7H-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12539
https://www.proquest.com/docview/1690185555
https://www.proquest.com/docview/1778017744
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119639
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119639
UnpaywallVersion submittedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241006
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241006
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: The EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241006
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: AKVCP
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB4heAAeWiitmhaQewjx4sj32qpUKSEkaUUjVDUlSJVWe3hRROpEQNrCr2fGF6SiVVU_-RjL4905vrVnvwV46zKpXEzMth8LY6OFRHasAmV7xjVMxp5wE5oo_GkQ9YfBx1E4WoJ31VyYgh-i_uBGnpHHa3JwIS_vObk6M03Mzj5N3nP9iHjzO5_vqKMCFoUVrzcxxpSsQlTFU9-5kItWqFl_LQLNgjx0HVbn2Uxc_xSTySKGzZNQ9zF8q9Qvak_Om_Mr2VQ3vzE7_uf7bcCjEpxarcKaNmEpzZ7A-j3Kwi14TwEkr539kVofvmM0smgEe8dDa40zPKPRYrSFgBZPTI1F4WlGxV9PYdg9_HLQt8s1GGyFQCmxBSIE7cQqNioM0N-FccM0xTG11ImiBWsEwzGYThwptO9oXzJMb76KTKhdGTuJ_wyWs2mWPgdLeGkoVIx4U0cBk0wksWN8vN14iWO8oAH7VW9wVRKU0zoZE14NVLBJeN4kDXhdi84KVo6HhPbyLq0lxMU5lbGxkJ8Mevykd-S1j1ifjxqwXfU5Lz34ktPvQ8QyuDXgVX0ZfY9-qIgsnc5RhjFM8PhCqPteYSv1w4i2uzP-2uLTizM-Gc9ROYx1qNSb2pb-pvp-bhp_luAHvW6-8-LfRV_CGsK9sCjX3IZlNIx0ByHVldyFlVa70-7u5j6ER8PBcev0FsdgHOM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9tAFH6icKAcKN3UAKXuIsTFkfexpaoSS5PQhhwqKLlUo1k8KCJ1IiDQ9tf3vfECqdqqqk_W-I08y1u-8Tx_A_DGZ1L5GJjdMBXGRQ1J3FRFyg2Mb5hMA-Fn9KPw0SDpnUQfhvFwAd7W_8KU_BDNBzeyDOuvycDpg_QdK1dnpo3hOczuwZLdnyNI9OmWPCpiSVwzexNnTMUrRHk8TdW5aLREA_ttHmqW9KErsDwrpuL7jRiP51GsDUOdB_Cl7kCZfXLenl3JtvrxC7fj__ZwDVYrfOrslgr1EBby4hGs3GEtfAzvyIfY9Nnr3Dn8ig7JoUXsLRWtMyqwRKPSaAcxLRZMjEMeakr5X0_gpPP-eL_nVscwuAqxUuYKBAnaS1VqVByhyQvjx3mOy2qpM0Vn1giGyzCdeVLo0NOhZBjhQpWYWPsy9bLwKSwWkyJ_Bo4I8lioFCGnTiImmchSz4RY3QSZZ4KoBTv1dHBVcZTTURljXq9VcEi4HZIWvGpEpyUxx--Etu2cNhLi4pwy2VjMTwddftrtB3t91uPDFmzWk84rI77ktIOIcAavFrxsHqP50Z6KKPLJDGUYwxiPHcK2b5fK0ryMmLsPRp93-eTijI9HM2wcujts1OtGmf7W9B2rG3-W4Pvdjr1Z_3fRF7DcOz7q8_7h4OMG3Ef0F5fZm5uwiEqSP0eEdSW3rCH9BKkXHd8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9tAEB5RkFp4KPQSaSm4hxAvjnyvrUqVuJLQplFVNSUPlVZ7eFFE6kSUFMqvZ8YXpAJU4SfLHsuzu3N86x1_C_DeZVK5mJhtPxbGRguJ7FgFyvaMa5iMPeEm9KPwl17U6QefBuFgDj5U_8IU_BD1BzfyjDxek4NPtLnm5OrINDE7-8kDWAgiTJOEiL5dcUcFLAorYm-ijClphaiMp350JhktUL-ezyLNgj10CR5Ns4n4eyZGo1kQm2eh1jL8rPQvik-Om9NT2VQX_1A73rOBK_C4RKfWdmFOT2AuzZ7C0jXOwmfwkSJIXjz7J7UOfmE4smgKe0VEaw0zvKLRZLSFiBYvjI1F8WlC1V_Pod_a_77bsctNGGyFSCmxBUIE7cQqNioM0OGFccM0xUm11ImiHWsEw0mYThwptO9oXzLMb76KTKhdGTuJ_wLms3GWroIlvDQUKkbAqaOASSaS2DE-Pm68xDFe0ICtajS4KhnKaaOMEa9mKtglPO-SBrytRScFLcdNQpv5kNYS4uSY6thYyA97bX7Y7no7XdbhgwasVWPOSxf-zWn9EMEMHg14U99G56MVFZGl4ynKMIYZHhuEum8WtlK_jHi794Y_tvn45IiPhlNUDoMdKvWutqW7VN_KTeN2Cb7bbuUnL_9fdAMeft1r8e5B7_MrWEToFxalm2swjzaSvkZ4dSrXcze6BDcDHI4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B8gB94EYYCjKHqr448r3eSIBCIQmoRDwQGp5We1ZRjR21TTh-PbO-2opDYMmStR4fuzO78409-y3As4AIGaBj9qKMGw8tJPUyGUsvNIEhIgt5QO1E4fezdDqP3y2SxdmnC2y-Jskdg80y3-iXWPIc92EhiuGJHubL9VAtN9wLrOnQy9BHF5rEPejPZx9Gn1smb8sRU88rwjE4TWjDKWRzeOShGaBXt6uDn_NEfduo3y7CzJo6dAuurIsV__6V5_lFBFu5oPF1WLQTeerMk6PB-lQM5I9feR3_t3Y34FoDS91RbUc34ZIubsHWObLC2_DCDh1V1uxGu2-_4Djk2tj1jIHWXRZYotBWlItQFgtK49qBaWXTvu7AfPzm497Ua1Zf8CRCJOpxxAbKz2RmZBJjT-cmSLTGaFooKu1SNZxg9KWoL7iKfBUJgo4tkqlJVCAyn0Z3oVeUhb4HLg91wmWGSFOlMRGE08w3EV5uQuqbMHZgt9UEkw01uV0hI2dtiIJKY5XSHHjSia5qPo7fCe1U6uwk-PGRTWAjCTuYTdjBZD98tU-mbOHAdqtv1vTdE2Z_HCKKwc2Bx91p7HX2VwovdLlGGULQtWOF8N13ajvpHmYJu18vP41YeXzIUKOsVqYDTzs7-tur71YW9mcJtjcZVwf3_-mGD-AqYrykztHchh7ahH6IOOpUPGr6zE-ceBoi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Image+Reconstruction+in+Reduced+Union+of+Subspaces&rft.jtitle=Computer+graphics+forum&rft.au=Miandji%2C+Ehsan&rft.au=Kronander%2C+Joel&rft.au=Unger%2C+Jonas&rft.date=2015-05-01&rft.issn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=33&rft_id=info:doi/10.1111%2Fcgf.12539&rft.externalDocID=oai_DiVA_org_liu_119639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon