Compressive Image Reconstruction in Reduced Union of Subspaces
We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light‐fields. The algorithm relies on a learning‐based basis representation. We train an ensemble of intrinsically two‐dimensional (2D)...
Saved in:
Published in | Computer graphics forum Vol. 34; no. 2; pp. 33 - 44 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-7055 1467-8659 1467-8659 |
DOI | 10.1111/cgf.12539 |
Cover
Summary: | We present a new compressed sensing framework for reconstruction of incomplete and possibly noisy images and their higher dimensional variants, e.g. animations and light‐fields. The algorithm relies on a learning‐based basis representation. We train an ensemble of intrinsically two‐dimensional (2D) dictionaries that operate locally on a set of 2D patches extracted from the input data. We show that one can convert the problem of 2D sparse signal recovery to an equivalent 1D form, enabling us to utilize a large family of sparse solvers. The proposed framework represents the input signals in a reduced union of subspaces model, while allowing sparsity in each subspace. Such a model leads to a much more sparse representation than widely used methods such as K‐SVD. To evaluate our method, we apply it to three different scenarios where the signal dimensionality varies from 2D (images) to 3D (animations) and 4D (light‐fields). We show that our method outperforms state‐of‐the‐art algorithms in computer graphics and image processing literature. |
---|---|
Bibliography: | Supporting InformationSupporting Information ArticleID:CGF12539 istex:719C6E09B9806C60A2BBFDDD910E24F84661E5CB ark:/67375/WNG-WGL2BL7H-X SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0167-7055 1467-8659 1467-8659 |
DOI: | 10.1111/cgf.12539 |