Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles
•This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently desig...
Saved in:
Published in | Photodiagnosis and photodynamic therapy Vol. 39; p. 102915 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-1000 1873-1597 1873-1597 |
DOI | 10.1016/j.pdpdt.2022.102915 |
Cover
Abstract | •This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently designed nanoformulations reported to exhibit enhanced EPR effect.•A special focus has been given on combination therapy for in vitro or in vivo studies that help in achieving a synergistic EPR effect.
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region. |
---|---|
AbstractList | Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region. •This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently designed nanoformulations reported to exhibit enhanced EPR effect.•A special focus has been given on combination therapy for in vitro or in vivo studies that help in achieving a synergistic EPR effect. Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region. Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region. |
ArticleNumber | 102915 |
Author | Singh, Surya Prakash Rengan, Aravind Kumar Murugappan, Sivasubramanian Shinde, Vinod Ravasaheb Revi, Neeraja |
Author_xml | – sequence: 1 givenname: Vinod Ravasaheb surname: Shinde fullname: Shinde, Vinod Ravasaheb organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India – sequence: 2 givenname: Neeraja orcidid: 0000-0003-0810-9054 surname: Revi fullname: Revi, Neeraja organization: Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India – sequence: 3 givenname: Sivasubramanian surname: Murugappan fullname: Murugappan, Sivasubramanian organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India – sequence: 4 givenname: Surya Prakash surname: Singh fullname: Singh, Surya Prakash organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India – sequence: 5 givenname: Aravind Kumar orcidid: 0000-0003-3994-6760 surname: Rengan fullname: Rengan, Aravind Kumar email: aravind@bme.iith.ac.in organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35597441$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtPJCEURonR-Bp_gcmEpZvq4VUvJy6McWZMTGbjnlBwS-mhoATapP-9lK0bF-OCQOA7N9x7TtC-Dx4QOqdkRQltfqxXs5lNXjHCWLlhPa330DHtWl7Rum_3y7luWUUJIUfoJKU1IVz0RByiI16XgBD0GD3d-iflNRg8Q5xADdbZvMXKGxwhg882eAzjCDpf4mv8D7Z4VHoJqRwiHstKwVmD82Yq56ziI2TrH_GwxV75MKuYrXaQvqGDUbkEZ-_7KXr4dftw86e6__v77ub6vtJCkFw1LRt4M7ScKzCsKf-ktB8Gw2smut5AaVKVR25IDV0nGOO6U1RQ3lM9NIKfootd2TmG5w2kLCebNDinPIRNkqxp2rYThHYl-v09uhkmMHKOdlJxKz-GUwL9LqBjSCnCKPXSdplIjso6SYlcRMi1fBMhFxFyJ6Kw_BP7Uf7_1NWOgjKhFwtRJm1h0WNjMSBNsF_wPz_x2llvtXJF3Jf0K3o0tkk |
CitedBy_id | crossref_primary_10_1186_s12951_023_01820_7 crossref_primary_10_3390_pharmaceutics15051545 crossref_primary_10_3390_molecules29112643 crossref_primary_10_1016_j_fmre_2024_10_017 crossref_primary_10_3390_pharmaceutics16040463 crossref_primary_10_1016_j_ijbiomac_2024_132888 crossref_primary_10_1039_D4NR00554F crossref_primary_10_1186_s12951_024_02309_7 crossref_primary_10_3390_pharmaceutics16040549 crossref_primary_10_1007_s12274_023_5541_1 crossref_primary_10_3390_ani14040655 crossref_primary_10_1016_j_cej_2024_157451 crossref_primary_10_1186_s40001_023_01429_4 crossref_primary_10_3390_ijms24129902 crossref_primary_10_1016_j_ijpharm_2023_123136 crossref_primary_10_1038_s41598_023_42756_0 crossref_primary_10_1021_acsabm_2c00724 crossref_primary_10_1002_adhm_202302902 crossref_primary_10_1007_s10967_025_10010_8 crossref_primary_10_3390_cancers15041075 crossref_primary_10_1002_ange_202418047 crossref_primary_10_1016_j_jddst_2024_105447 crossref_primary_10_1016_j_omtn_2024_102322 crossref_primary_10_3389_fonc_2024_1296091 crossref_primary_10_1016_j_eurpolymj_2024_112870 crossref_primary_10_1039_D4MH00068D crossref_primary_10_1080_20415990_2024_2394012 crossref_primary_10_3390_pharmaceutics15071820 crossref_primary_10_1016_j_ijpharm_2024_124639 crossref_primary_10_1002_adhm_202400746 crossref_primary_10_1016_j_jconrel_2023_08_036 crossref_primary_10_1021_acsabm_3c00711 crossref_primary_10_1007_s11051_024_06104_1 crossref_primary_10_1007_s12032_024_02593_1 crossref_primary_10_1186_s12951_024_02944_0 crossref_primary_10_1007_s12032_025_02609_4 crossref_primary_10_1007_s13346_024_01693_9 crossref_primary_10_1007_s44174_025_00280_x crossref_primary_10_1016_j_ijpharm_2024_124473 crossref_primary_10_1016_j_preme_2025_100018 crossref_primary_10_1021_acs_jmedchem_4c02263 crossref_primary_10_1186_s12943_024_02214_5 crossref_primary_10_1007_s13346_024_01591_0 crossref_primary_10_1080_00914037_2025_2472185 crossref_primary_10_3390_ph17101296 crossref_primary_10_1016_j_ccr_2025_216572 crossref_primary_10_1021_acs_molpharmaceut_3c00379 crossref_primary_10_1021_acsnano_4c09525 crossref_primary_10_3389_fonc_2024_1379986 crossref_primary_10_1016_j_addr_2024_115216 crossref_primary_10_1186_s12951_024_02992_6 crossref_primary_10_1186_s41181_024_00266_y crossref_primary_10_3390_pharmaceutics15020504 crossref_primary_10_3390_bioengineering10020232 crossref_primary_10_3390_app131810156 crossref_primary_10_1007_s11307_023_01801_0 crossref_primary_10_1016_j_bbrep_2024_101713 crossref_primary_10_1016_j_ccr_2024_216207 crossref_primary_10_3390_pharmaceutics15030976 crossref_primary_10_3390_ddc3040046 crossref_primary_10_2147_DDDT_S497888 crossref_primary_10_1016_j_jconrel_2025_113613 crossref_primary_10_1186_s12951_025_03223_2 crossref_primary_10_3390_pharmaceutics14091919 crossref_primary_10_1002_adhm_202300481 crossref_primary_10_1021_acs_molpharmaceut_2c00811 crossref_primary_10_3390_molecules29112438 crossref_primary_10_1080_10717544_2024_2390022 crossref_primary_10_1002_bmm2_12112 crossref_primary_10_1002_VIW_20220059 crossref_primary_10_1016_j_gendis_2024_101441 crossref_primary_10_1016_j_mtbio_2025_101626 crossref_primary_10_1007_s12013_024_01273_1 crossref_primary_10_1016_j_jddst_2024_105515 crossref_primary_10_1007_s00210_025_03861_1 crossref_primary_10_1021_acsmacrolett_4c00306 crossref_primary_10_3390_ijms26051814 crossref_primary_10_1016_j_mtbio_2022_100358 crossref_primary_10_1016_j_cis_2024_103320 crossref_primary_10_1002_anie_202418047 |
Cites_doi | 10.1016/j.euf.2018.04.003 10.1186/s12935-020-01719-5 10.1016/j.addr.2020.06.005 10.1016/j.pdpdt.2008.05.004 10.1016/j.coi.2018.04.008 10.2174/156802612799078883 10.1016/j.nano.2011.09.012 10.1007/s10311-020-01022-9 10.1016/j.jconrel.2016.07.028 10.1002/advs.202001088 10.1002/wnan.1362 10.1021/acs.nanolett.8b00495 10.3390/pharmaceutics12030232 10.1002/wnan.1519 10.1021/nn300149c 10.1038/s41598-017-16293-6 10.7150/thno.37593 10.1038/s41467-018-03705-y 10.1016/j.ctrv.2013.10.005 10.1562/2005-05-04-RA-513 10.1016/S1734-1140(12)70901-5 10.1021/bc025516h 10.1021/nn5070259 10.1631/jzus.B1800508 10.1158/1535-7163.MCT-16-0642 10.1016/j.athoracsur.2018.08.053 10.1016/j.ijbiomac.2014.01.019 10.1186/s12951-019-0475-1 10.1016/j.addr.2008.08.005 10.1186/s13045-019-0818-2 10.3390/jcm8122214 10.1021/nn301282m 10.1016/j.biopha.2018.07.049 10.1016/j.biomaterials.2016.01.006 10.1016/j.ymthe.2017.12.018 10.7150/thno.36510 10.3109/10837450.2012.757782 10.1016/j.jconrel.2011.06.001 10.1088/1361-6528/ab6fd5 10.1038/s41598-018-34898-3 10.1038/nrd2614 10.1016/0020-711X(93)90685-8 10.3390/cancers13122992 10.1002/adma.201103550 10.1039/D0TB00235F 10.1021/mp900090z 10.1021/acsnano.0c02197 10.1158/0008-5472.CAN-15-1370 10.1016/j.pdpdt.2021.102205 10.1039/C7BM00872D 10.1021/acs.langmuir.8b02946 10.1158/0008-5472.CAN-12-1683 10.2183/pjab.88.53 10.3892/mco.2014.356 10.1016/j.addr.2010.04.009 10.1016/j.biomaterials.2019.119330 10.1038/s41427-018-0066-x 10.1002/lsm.20984 10.1021/acsnano.7b07214 10.1016/j.xphs.2017.06.019 10.1038/ncomms13193 10.1021/nn501134q 10.1016/j.jconrel.2013.02.016 10.1016/j.jconrel.2020.02.043 10.1016/j.canlet.2020.03.017 10.1016/j.crad.2017.04.003 10.7150/ntno.44703 10.1002/wnan.1583 10.4155/tde-2018-0050 10.1007/s11523-015-0379-4 10.1093/mutage/gey014 10.1021/acsnano.0c05425 10.1155/2012/967347 10.7150/ntno.41737 10.1021/nl5045378 10.3390/biomedicines5020034 10.1007/s00432-014-1767-3 10.1016/j.pharmthera.2015.06.006 10.1038/s41598-019-51361-z 10.1126/scitranslmed.aan0026 10.1038/nrc.2017.93 10.1016/j.ijpharm.2016.06.009 10.1080/107175401317245895 10.1016/j.actbio.2019.05.008 10.1080/jdt.14.s3.15.22 10.1562/2005-02-23-RA-448 10.1186/s12951-020-00697-0 10.1111/j.1751-1097.1991.tb02133.x 10.1016/j.taap.2007.01.025 10.3171/2013.7.JNS13415 10.1016/j.pdpdt.2010.02.001 10.7150/ntno.19380 10.1016/j.addr.2008.03.005 10.7150/thno.14988 10.3390/biomedicines9020114 10.1016/j.biomaterials.2019.01.025 10.7150/thno.36777 10.1038/bjc.1990.89 10.1016/S1572-1000(04)00007-9 10.1002/advs.201870050 10.1038/bjc.2014.95 10.1016/j.addr.2015.01.002 10.1039/C9MD00558G |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022. Published by Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.pdpdt.2022.102915 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1873-1597 |
ExternalDocumentID | 35597441 10_1016_j_pdpdt_2022_102915 S1572100022002010 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPCBC SSH SSZ T5K Z5R ~G- 0SF AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c440t-672b36b733aed26559119bbd352489de915a7333d05e884223c8a141391cb643 |
IEDL.DBID | .~1 |
ISSN | 1572-1000 1873-1597 |
IngestDate | Sun Sep 28 04:24:33 EDT 2025 Thu Apr 03 07:09:54 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 01:18:04 EDT 2025 Fri Feb 23 02:38:40 EST 2024 Tue Aug 26 20:13:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles PTT PDT Microbubble EPR Extravasation Microenvironment Photodynamic Therapy Pharmacokinetics Ultrasound Enhanced Permeability and Retention (EPR) effect |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c440t-672b36b733aed26559119bbd352489de915a7333d05e884223c8a141391cb643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0810-9054 0000-0003-3994-6760 |
PMID | 35597441 |
PQID | 2667784018 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2667784018 pubmed_primary_35597441 crossref_citationtrail_10_1016_j_pdpdt_2022_102915 crossref_primary_10_1016_j_pdpdt_2022_102915 elsevier_sciencedirect_doi_10_1016_j_pdpdt_2022_102915 elsevier_clinicalkey_doi_10_1016_j_pdpdt_2022_102915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Photodiagnosis and photodynamic therapy |
PublicationTitleAlternate | Photodiagnosis Photodyn Ther |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yeh, Ramaswamy (bib0001) 2015; 75 Fang, Nakamura, Maeda (bib0067) 2011; 63 Lukianova-Hleb, Ren, Zasadzinski, Wu, Lapotko (bib0005) 2012; 24 Bazak, Houri, Achy, Hussein, Refaat (bib0019) 2014; 2 Hernot, Klibanov (bib0109) 2008; 60 Zhen, Yi, Zhao, Lou, Xia, Tang (bib0099) 2019; 218 Sun, Chen, Yu, Wang, Zhang, Zhao, Chen, He, Luo, Sun (bib0094) 2019; 92 Gullotti, Yeo (bib0039) 2009; 6 Da Silva, Rueda, Löwik, Ossendorp, Cruz (bib0036) 2016; 83 Luo, Wang, Walker, Wang, Springer, Lou, Ramamurthy, Burda, Basilion (bib0096) 2020; 14 Zhen, Tang, Chuang, Todd, Zhang, Lin, Niu, Liu, Wang, Pan, Chen, Xie (bib0044) 2014; 8 Noweski, Roosen, Lebdai, Barret, Emberton, Benzaghou, Apfelbeck, Gaillac, Gratzke, Stief, Azzouzi (bib0085) 2019; 5 Duan, Yang, Jin, Yang, Liu, Hu, Wang, Yue, Gu (bib0110) 2020; 10 Liang, Xu, Gao, Zhou, Zhang, Dai (bib0112) 2018; 10 Lim, Ma (bib0069) 2019; 12 Tang, Fan, Borst, Cheng (bib0046) 2012; 6 Siemann, Horsman (bib0070) 2015; 153 Karagiannis, Pastoriza, Wang, Harney, Entenberg, Pignatelli, Sharma, Xue, Cheng, D'Alfonso, Jones, Anampa, Rohan, Sparano, Condeelis, Oktay (bib0007) 2017; 9 Rosenblum, Joshi, Tao, Karp, Peer (bib0003) 2018; 9 Ahmadiankia, Bagheri, Fazli (bib0056) 2019; 8 Cai, Chen, Qin, Qu, Dong, Ni, Yin (bib0072) 2020; 12 Huang, Ma, Liu, Huo, Kumar, Wei, Zhang, Jin, Gan, Wang, He, Zhang, Liang (bib0052) 2012; 6 Allison, Downie, Cuenca, Hu, Childs, Sibata (bib0086) 2004; 1 Natfji, Ravishankar, Osborn, Greco (bib0041) 2017; 106 Cabral, Makino, Matsumoto, Mi, Wu, Nomoto, Toh, Yamada, Higuchi, Konishi, Kano, Nishihara, Miura, Nishiyama, Kataoka (bib0049) 2015; 9 Zhang, Wang, Yang, Sheng, Tan, Wang, Ran, Yi, Zhong, Lin, Chen (bib0118) 2018; 5 Kwiatkowski, Knap, Przystupski, Saczko, Kędzierska, Knap-Czop, Kotlińska, Michel, Kotowski, Kulbacka (bib0021) 2018; 106 Fu, Li, Liu, Chen, Zhang, Yu, Wu, Li, Du, Dang, Wu, Wei, Lin, Lei (bib0097) 2020; 18 Rajabi, Mousa (bib0066) 2017; 5 Behera, Padhi (bib0016) 2020; 18 . Clemons, Singh, Sorolla, Chaudhari, Hubbard, Iyer (bib0018) 2018; 34 Zhang, Lin, Li, He, Du, Wang (bib0040) 2019; 11 Gomer (bib0025) 1991; 54 Reddi, Zhou, Biolo, Menegaldo, Jori (bib0077) 1990; 61 Luiza Andreazza, Vevert-Bizet, Bourg-Heckly, Sureau, José Salvador, Bonneau (bib0020) 2016; 510 Fang, Islam, Maeda (bib0064) 2020; 157 Hoya, Guterman, Miskolczi, Hopkins (bib0105) 2001; 8 Saboktakin, Tabatabaee (bib0084) 2014; 65 Baron, Malbasa, Santo-Domingo, Fu, Miller, Hanneman, Hsia, Oleinick, Colussi, Cooper (bib0030) 2010; 42 Li, Luo, Liao, Zhang, Zhou, Liu, Miao (bib0024) 2003; 23 Kessel, Woodburn (bib0081) 1993; 25 Byrne, Betancourt, Brannon-Peppas (bib0037) 2008; 60 Zou, Wang, He, Zeng, Tan, Cao, He, Zhang, Guo, Li (bib0113) 2016; 6 Bazak, Houri, El Achy, Kamel, Refaat (bib0038) 2015; 141 Master, Qi, Oleinick, Gupta (bib0082) 2012; 8 Wei, Zhao (bib0060) 2014; 19 Cheung, Ma, Karatasos, Seitsonen, Ruokolainen, Koffi, Hassan, Al-Jamal (bib0014) 2020; 4 Islam, Maeda, Fang (bib0065) 2021 Manzoor, Lindner, Landon, Park, Simnick, Dreher, Das, Hanna, Park, Chilkoti, Koning, ten Hagen, Needham, Dewhirst (bib0042) 2012; 72 Kumar, Deep (bib0104) 2020; 479 Ngoune, Peters, von Elverfeldt, Winkler, Pütz (bib0071) 2016; 238 Deepagan, Ko, Kwon, Rao, Kim, Um, Lee, Min, Lee, Choi, Shin, Suh, Park (bib0107) 2018; 18 Muragaki, Akimoto, Maruyama, Iseki, Ikuta, Nitta, Maebayashi, Saito, Okada, Kaneko, Matsumura, Kuroiwa, Karasawa, Nakazato, Kayama (bib0031) 2013; 119 Allison, Sibata (bib0088) 2008; 5 Goos, Cho, Carter, Dilling, Davydova, Mandleywala, Puttick, Gupta, Price, Quinn, Whittaker, Lewis, Davis (bib0043) 2020; 10 Maeda (bib0053) 2012; 88 Emami Nejad, Najafgholian, Rostami, Sistani, Shojaeifar, Esparvarinha, Nedaeinia, Haghjooy Javanmard, Taherian, Ahmadlou, Salehi, Sadeghi, Manian (bib0054) 2021; 21 Zheng, Li, Zhang, Lund-Katz, Chance, Glickson (bib0022) 2002; 13 Düzgüneş, Piskorz, Skupin-Mrugalska, Goslinski, Mielcarek, Konopka (bib0091) 2018; 9 Matsumura, Maeda (bib0004) 1986; 46 Wang, Zhang, Zhang, Tian, Cheng, Pan, Cui, Chang (bib0102) 2020; 8 Foley (bib0032) 2003; 14 Allison, Sibata (bib0029) 2010; 7 Chauhan, Bukhari, Ravichandran, Gupta, George, Poojari, Ingle, Rengan, Shanavas, Srivastava, De (bib0093) 2018; 8 Jasinski, Li, Guo (bib0051) 2018; 26 Dewhirst, Secomb (bib0045) 2017; 17 Kroon, Metselaar, Storm, van der Pluijm (bib0059) 2014; 40 Hu, Feng, Lu, Allison, Cuenca, Downie, Sibata (bib0087) 2005; 81 Wang, Wang, Xu, Tian, Chen (bib0074) 2019; 197 Liu, An, Jia, Wang, Wu, Zhen, Cao, Gao (bib0101) 2020; 321 Wilczewska, Niemirowicz, Markiewicz, Car (bib0015) 2012; 64 Dozono, Yanazume, Nakamura, Etrych, Chytil, Ulbrich, Fang, Arimura, Douchi, Kobayashi, Ikoma, Maeda (bib0058) 2016; 11 Kato, Jin, Lee, Ujiie, Fujino, Hu, Wada, Wu, Chen, Weersink, Kanno, Hatanaka, Hatanaka, Kaga, Matsui, Matsuno, De Perrot, Wilson, Zheng, Yasufuku (bib0034) 2018; 53 Zhao, Duan, Wang, Fei, Li (bib0117) 2020; 12 Alexander V Kabanov, William C. Zamboni, Liposomal doxorubicin and pluronic combination for cancer therapy. Pegaz, Debefve, Borle, Ballini, Wagnières, Spaniol, Albrecht, Scheglmann, Nifantiev, van den Bergh, Konan (bib0083) 2005; 81 Deshpande, Ramesh, Nandi, Nguyen, Brouillard, Kulkarni (bib0055) 2020; 4 Wang, Luo, Basilion (bib0011) 2021; 13 Ujiie, Ding, Fan, Kato, Lee, Fujino, Kinoshita, Lee, Waddell, Keshavjee, Wilson, Zheng, Chen, Yasufuku (bib0023) 2019; 107 Rengan, Bukhari, Pradhan, Malhotra, Banerjee, Srivastava, De (bib0073) 2015; 15 Roh, Kim, Kim, Na, Park, Choi (bib0012) 2017; 16 Miller, Baron, Scull, Hsia, Berlin, McCormick, Colussi, Kenney, Cooper, Oleinick (bib0027) 2007; 224 Liu, Ye, Lu, Chen, Tseng, Lo, Ho (bib0076) 2017; 7 Chandel, Sharma, Chawla, Sachdeva, Shukla (bib0106) 2019; 9 May, Donaldson, Gynn, Morse (bib0009) 2018; 33 Fisher, Obaid, Niu, Foltz, Goldstein, Hasan, Lilge (bib0090) 2019; 8 Zhang, He, Yu, Li, Liu, Zhou, Liu (bib0100) 2020; 11 Yang, Hou, Sun, Wu, Xu, Xiong, Chai, Liu, Yu, Wang, Xu, Liang, Zhang (bib0095) 2020; 7 Benefits of Nanotechnology for Cancer -, National Cancer Institute, 2017. Gomer, Dougherty (bib0078) 1979; 39 Andre Nel (bib0002) 2017; 11 Alessandrino, Tirumani, Krajewski, Shinagare, Jagannathan, Ramaiya, Di Salvo (bib0008) 2017; 72 Wu, Yang, Li, Dong, Liu, Zhang (bib0111) 2021; 65 Peng, Warloe, Berg, Moan, Kongshaug, Giercksky, Nesland (bib0028) 1997; 79 Jahan, Karim, Chowdhury (bib0057) 2021; 9 Hak, Ravasaheb Shinde, Rengan (bib0114) 2021; 33 Sun, Chen, Wang, Ji, Peng, Jin, Wu (bib0116) 2019; 9 (2019). Mross, Kratz (bib0006) 2022 Huggett, Jermyn, Gillams, Illing, Mosse, Novelli, Kent, Bown, Hasan, Pogue, Pereira (bib0026) 2014; 110 Thundimadathil (bib0010) 2012; 2012 Li, Zheng, Yuan, Chen, Huang (bib0035) 2017; 1 Chen, Gao, Deng, Jin, Ji, Ding (bib0017) 2020; 14 Schmidt, Wagner, Oehr, Krebs (bib0033) 1992; 114 Davis, (Georgia) Chen, Shin (bib0048) 2008; 7 Liang (bib0098) 2020; 31 Chen, Jaskula-Sztul, Esquibel, Lou, Zheng, Dammalapati, Harrison, Eliceiri, Tang, Chen, Gong (bib0063) 2017; 27 Kang, Rho, Stiles, Hu, Baek, Hwang, Kashiwagi, Kim, Choi (bib0050) 2019 Wang, Zheng (bib0108) 2019; 20 Shun-Ichiro, Yuichiro, Kenji, Toshiaki, Ichiro (bib0013) 2012; 12 Farnsworth, Achen, Stacker (bib0068) 2018; 53 Gupta (bib0047) 2016; 8 Bae, Park (bib0075) 2011; 153 Jori (bib0080) 1987; 30 Maeda (bib0103) 2015; 91 Park, Cho, Han, Shin, Na, Lee, Kim (bib0092) 2017; 6 Son, Yi, Kwak, Yang, Park, Lee, Choi, Koo (bib0079) 2019; 17 Chen, Xu, Liang, Wang, Peng, Liu (bib0115) 2016; 7 Kano, Taniwaki, Nakamura, Shimada, Moriyama, Maruyama (bib0089) 2013; 167 Byrne (10.1016/j.pdpdt.2022.102915_bib0037) 2008; 60 Jasinski (10.1016/j.pdpdt.2022.102915_bib0051) 2018; 26 Behera (10.1016/j.pdpdt.2022.102915_bib0016) 2020; 18 Allison (10.1016/j.pdpdt.2022.102915_bib0086) 2004; 1 Ujiie (10.1016/j.pdpdt.2022.102915_bib0023) 2019; 107 Reddi (10.1016/j.pdpdt.2022.102915_bib0077) 1990; 61 Yeh (10.1016/j.pdpdt.2022.102915_bib0001) 2015; 75 Cheung (10.1016/j.pdpdt.2022.102915_bib0014) 2020; 4 Davis (10.1016/j.pdpdt.2022.102915_bib0048) 2008; 7 Da Silva (10.1016/j.pdpdt.2022.102915_bib0036) 2016; 83 Roh (10.1016/j.pdpdt.2022.102915_bib0012) 2017; 16 Gomer (10.1016/j.pdpdt.2022.102915_bib0025) 1991; 54 Wei (10.1016/j.pdpdt.2022.102915_bib0060) 2014; 19 Chandel (10.1016/j.pdpdt.2022.102915_bib0106) 2019; 9 Kang (10.1016/j.pdpdt.2022.102915_bib0050) 2019 Luiza Andreazza (10.1016/j.pdpdt.2022.102915_bib0020) 2016; 510 Zhang (10.1016/j.pdpdt.2022.102915_bib0100) 2020; 11 Zheng (10.1016/j.pdpdt.2022.102915_bib0022) 2002; 13 Bazak (10.1016/j.pdpdt.2022.102915_bib0038) 2015; 141 Allison (10.1016/j.pdpdt.2022.102915_bib0088) 2008; 5 Kano (10.1016/j.pdpdt.2022.102915_bib0089) 2013; 167 Zhen (10.1016/j.pdpdt.2022.102915_bib0044) 2014; 8 May (10.1016/j.pdpdt.2022.102915_bib0009) 2018; 33 Natfji (10.1016/j.pdpdt.2022.102915_bib0041) 2017; 106 Liu (10.1016/j.pdpdt.2022.102915_bib0101) 2020; 321 Mross (10.1016/j.pdpdt.2022.102915_bib0006) 2022 Zhang (10.1016/j.pdpdt.2022.102915_bib0040) 2019; 11 Allison (10.1016/j.pdpdt.2022.102915_bib0029) 2010; 7 Bae (10.1016/j.pdpdt.2022.102915_bib0075) 2011; 153 Li (10.1016/j.pdpdt.2022.102915_bib0035) 2017; 1 Zou (10.1016/j.pdpdt.2022.102915_bib0113) 2016; 6 Bazak (10.1016/j.pdpdt.2022.102915_bib0019) 2014; 2 Zhao (10.1016/j.pdpdt.2022.102915_bib0117) 2020; 12 Huggett (10.1016/j.pdpdt.2022.102915_bib0026) 2014; 110 Wang (10.1016/j.pdpdt.2022.102915_bib0011) 2021; 13 Deshpande (10.1016/j.pdpdt.2022.102915_bib0055) 2020; 4 Siemann (10.1016/j.pdpdt.2022.102915_bib0070) 2015; 153 Schmidt (10.1016/j.pdpdt.2022.102915_bib0033) 1992; 114 Gupta (10.1016/j.pdpdt.2022.102915_bib0047) 2016; 8 Sun (10.1016/j.pdpdt.2022.102915_bib0094) 2019; 92 Maeda (10.1016/j.pdpdt.2022.102915_bib0053) 2012; 88 Kato (10.1016/j.pdpdt.2022.102915_bib0034) 2018; 53 Hernot (10.1016/j.pdpdt.2022.102915_bib0109) 2008; 60 Liu (10.1016/j.pdpdt.2022.102915_bib0076) 2017; 7 Yang (10.1016/j.pdpdt.2022.102915_bib0095) 2020; 7 Lukianova-Hleb (10.1016/j.pdpdt.2022.102915_bib0005) 2012; 24 Islam (10.1016/j.pdpdt.2022.102915_bib0065) 2021 Kumar (10.1016/j.pdpdt.2022.102915_bib0104) 2020; 479 Son (10.1016/j.pdpdt.2022.102915_bib0079) 2019; 17 Rajabi (10.1016/j.pdpdt.2022.102915_bib0066) 2017; 5 Chen (10.1016/j.pdpdt.2022.102915_bib0063) 2017; 27 Liang (10.1016/j.pdpdt.2022.102915_bib0112) 2018; 10 Manzoor (10.1016/j.pdpdt.2022.102915_bib0042) 2012; 72 Foley (10.1016/j.pdpdt.2022.102915_bib0032) 2003; 14 Shun-Ichiro (10.1016/j.pdpdt.2022.102915_bib0013) 2012; 12 Fisher (10.1016/j.pdpdt.2022.102915_bib0090) 2019; 8 Deepagan (10.1016/j.pdpdt.2022.102915_bib0107) 2018; 18 Karagiannis (10.1016/j.pdpdt.2022.102915_bib0007) 2017; 9 Alessandrino (10.1016/j.pdpdt.2022.102915_bib0008) 2017; 72 Gullotti (10.1016/j.pdpdt.2022.102915_bib0039) 2009; 6 Duan (10.1016/j.pdpdt.2022.102915_bib0110) 2020; 10 Kessel (10.1016/j.pdpdt.2022.102915_bib0081) 1993; 25 Matsumura (10.1016/j.pdpdt.2022.102915_bib0004) 1986; 46 Emami Nejad (10.1016/j.pdpdt.2022.102915_bib0054) 2021; 21 Zhang (10.1016/j.pdpdt.2022.102915_bib0118) 2018; 5 Saboktakin (10.1016/j.pdpdt.2022.102915_bib0084) 2014; 65 Pegaz (10.1016/j.pdpdt.2022.102915_bib0083) 2005; 81 Zhen (10.1016/j.pdpdt.2022.102915_bib0099) 2019; 218 Luo (10.1016/j.pdpdt.2022.102915_bib0096) 2020; 14 Dewhirst (10.1016/j.pdpdt.2022.102915_bib0045) 2017; 17 Chen (10.1016/j.pdpdt.2022.102915_bib0115) 2016; 7 Cai (10.1016/j.pdpdt.2022.102915_bib0072) 2020; 12 Gomer (10.1016/j.pdpdt.2022.102915_bib0078) 1979; 39 Farnsworth (10.1016/j.pdpdt.2022.102915_bib0068) 2018; 53 Rengan (10.1016/j.pdpdt.2022.102915_bib0073) 2015; 15 Jahan (10.1016/j.pdpdt.2022.102915_bib0057) 2021; 9 Dozono (10.1016/j.pdpdt.2022.102915_bib0058) 2016; 11 Ngoune (10.1016/j.pdpdt.2022.102915_bib0071) 2016; 238 Wilczewska (10.1016/j.pdpdt.2022.102915_bib0015) 2012; 64 Hak (10.1016/j.pdpdt.2022.102915_bib0114) 2021; 33 Huang (10.1016/j.pdpdt.2022.102915_bib0052) 2012; 6 Peng (10.1016/j.pdpdt.2022.102915_bib0028) 1997; 79 Maeda (10.1016/j.pdpdt.2022.102915_bib0103) 2015; 91 Fang (10.1016/j.pdpdt.2022.102915_bib0064) 2020; 157 Clemons (10.1016/j.pdpdt.2022.102915_bib0018) 2018; 34 Hoya (10.1016/j.pdpdt.2022.102915_bib0105) 2001; 8 10.1016/j.pdpdt.2022.102915_bib0062 10.1016/j.pdpdt.2022.102915_bib0061 Baron (10.1016/j.pdpdt.2022.102915_bib0030) 2010; 42 Chauhan (10.1016/j.pdpdt.2022.102915_bib0093) 2018; 8 Fang (10.1016/j.pdpdt.2022.102915_bib0067) 2011; 63 Master (10.1016/j.pdpdt.2022.102915_bib0082) 2012; 8 Thundimadathil (10.1016/j.pdpdt.2022.102915_bib0010) 2012; 2012 Muragaki (10.1016/j.pdpdt.2022.102915_bib0031) 2013; 119 Andre Nel (10.1016/j.pdpdt.2022.102915_bib0002) 2017; 11 Park (10.1016/j.pdpdt.2022.102915_bib0092) 2017; 6 Wang (10.1016/j.pdpdt.2022.102915_bib0108) 2019; 20 Düzgüneş (10.1016/j.pdpdt.2022.102915_bib0091) 2018; 9 Goos (10.1016/j.pdpdt.2022.102915_bib0043) 2020; 10 Noweski (10.1016/j.pdpdt.2022.102915_bib0085) 2019; 5 Sun (10.1016/j.pdpdt.2022.102915_bib0116) 2019; 9 Wu (10.1016/j.pdpdt.2022.102915_bib0111) 2021; 65 Cabral (10.1016/j.pdpdt.2022.102915_bib0049) 2015; 9 Wang (10.1016/j.pdpdt.2022.102915_bib0102) 2020; 8 Miller (10.1016/j.pdpdt.2022.102915_bib0027) 2007; 224 Tang (10.1016/j.pdpdt.2022.102915_bib0046) 2012; 6 Liang (10.1016/j.pdpdt.2022.102915_bib0098) 2020; 31 Hu (10.1016/j.pdpdt.2022.102915_bib0087) 2005; 81 Chen (10.1016/j.pdpdt.2022.102915_bib0017) 2020; 14 Ahmadiankia (10.1016/j.pdpdt.2022.102915_bib0056) 2019; 8 Kwiatkowski (10.1016/j.pdpdt.2022.102915_bib0021) 2018; 106 Fu (10.1016/j.pdpdt.2022.102915_bib0097) 2020; 18 Lim (10.1016/j.pdpdt.2022.102915_bib0069) 2019; 12 Jori (10.1016/j.pdpdt.2022.102915_bib0080) 1987; 30 Li (10.1016/j.pdpdt.2022.102915_bib0024) 2003; 23 Wang (10.1016/j.pdpdt.2022.102915_bib0074) 2019; 197 Kroon (10.1016/j.pdpdt.2022.102915_bib0059) 2014; 40 Rosenblum (10.1016/j.pdpdt.2022.102915_bib0003) 2018; 9 |
References_xml | – volume: 8 start-page: 6004 year: 2014 end-page: 6013 ident: bib0044 article-title: Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles publication-title: ACS Nano – volume: 60 start-page: 1153 year: 2008 end-page: 1166 ident: bib0109 article-title: Microbubbles in ultrasound-triggered drug and gene delivery publication-title: Adv. Drug Deliv. Rev. – volume: 13 start-page: 2992 year: 2021 ident: bib0011 article-title: Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers publication-title: Cancers – volume: 25 start-page: 1377 year: 1993 end-page: 1383 ident: bib0081 article-title: Biodistribution of photosensitizing agents publication-title: Int. J. Biochem. – volume: 65 year: 2021 ident: bib0111 article-title: Nanobubbles for tumors: imaging and drug carriers publication-title: J. Drug Deliv. Sci. Technol. – volume: 106 start-page: 3179 year: 2017 end-page: 3187 ident: bib0041 article-title: Parameters affecting the enhanced permeability and retention effect: the need for patient selection publication-title: J. Pharm. Sci. – volume: 39 start-page: 146 year: 1979 end-page: 151 ident: bib0078 article-title: Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue publication-title: Cancer Res. – volume: 1 start-page: 27 year: 2004 end-page: 42 ident: bib0086 article-title: Photosensitizers in clinical PDT publication-title: Photodiagnosis Photodyn. Ther. – volume: 18 start-page: 2637 year: 2018 end-page: 2644 ident: bib0107 article-title: Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime publication-title: Nano Lett. – volume: 197 start-page: 284 year: 2019 end-page: 293 ident: bib0074 article-title: A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy publication-title: Biomaterials – volume: 15 start-page: 842 year: 2015 end-page: 848 ident: bib0073 article-title: analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer publication-title: Nano Lett. – volume: 7 start-page: 61 year: 2010 end-page: 75 ident: bib0029 article-title: Oncologic photodynamic therapy photosensitizers: a clinical review publication-title: Photodiagnosis Photodyn. Ther. – volume: 13 start-page: 392 year: 2002 end-page: 396 ident: bib0022 article-title: Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer publication-title: Bioconjugate Chem. – volume: 107 start-page: 369 year: 2019 end-page: 377 ident: bib0023 article-title: Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy publication-title: Ann. Thorac. Surg. – volume: 23 start-page: 1341 year: 2003 end-page: 1343 ident: bib0024 article-title: Clinical study of photofrin photodynamic therapy for advanced cancers publication-title: Di Yi Jun Yi Da Xue Xue Bao – volume: 65 start-page: 398 year: 2014 end-page: 414 ident: bib0084 article-title: The novel polymeric systems for photodynamic therapy technique publication-title: Int. J. Biol. Macromol. – volume: 321 start-page: 589 year: 2020 end-page: 601 ident: bib0101 article-title: Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer publication-title: J. Controll. Release – volume: 81 start-page: 1505 year: 2005 end-page: 1510 ident: bib0083 article-title: Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels publication-title: Photochem. Photobiol. – start-page: 1 year: 2021 end-page: 14 ident: bib0065 article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors publication-title: Expert Opin. Drug Deliv. – volume: 7 start-page: 771 year: 2008 end-page: 782 ident: bib0048 article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer publication-title: Nat. Rev. Drug Discov. – volume: 6 start-page: 1041 year: 2009 end-page: 1051 ident: bib0039 article-title: Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery publication-title: Mol. Pharm. – volume: 64 start-page: 1020 year: 2012 end-page: 1037 ident: bib0015 article-title: Nanoparticles as a drug delivery systems publication-title: Pharmacol. Rep. – volume: 119 start-page: 845 year: 2013 end-page: 852 ident: bib0031 article-title: Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors publication-title: J. Neurosurg. – volume: 34 start-page: 15343 year: 2018 end-page: 15349 ident: bib0018 article-title: Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy publication-title: Langmuir – volume: 6 start-page: 762 year: 2016 end-page: 772 ident: bib0113 article-title: Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics publication-title: Theranostics – volume: 54 start-page: 1093 year: 1991 end-page: 1107 ident: bib0025 article-title: Preclinical examination of first and second generation photosensitizers used in photodynamic therapy publication-title: Photochem. Photobiol. – volume: 53 start-page: 64 year: 2018 end-page: 73 ident: bib0068 article-title: The evolving role of lymphatics in cancer metastasis publication-title: Curr. Opin. Immunol. – volume: 17 start-page: 738 year: 2017 end-page: 750 ident: bib0045 article-title: Transport of drugs from blood vessels to tumour tissue publication-title: Nat. Rev. Cancer – volume: 9 start-page: 114 year: 2021 ident: bib0057 article-title: Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics publication-title: Biomedicines – volume: 72 start-page: 5566 year: 2012 end-page: 5575 ident: bib0042 article-title: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors publication-title: Cancer Res. – volume: 106 start-page: 1098 year: 2018 end-page: 1107 ident: bib0021 article-title: Photodynamic therapy – mechanisms, photosensitizers and combinations publication-title: Biomed. Pharmacother. – volume: 8 start-page: 2214 year: 2019 ident: bib0090 article-title: Liposomal lapatinib in combination with low-dose photodynamic therapy for the treatment of glioma publication-title: J. Clin. Med. – volume: 7 start-page: 13193 year: 2016 ident: bib0115 article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat. Commun. – volume: 14 start-page: 5121 year: 2020 end-page: 5134 ident: bib0017 article-title: Supramolecular aggregation-induced emission nanodots with programmed tumor microenvironment responsiveness for image-guided orthotopic pancreatic cancer therapy publication-title: ACS Nano – volume: 218 year: 2019 ident: bib0099 article-title: Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer publication-title: Biomaterials – volume: 63 start-page: 136 year: 2011 end-page: 151 ident: bib0067 article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv. Drug Deliv. Rev. – volume: 153 start-page: 107 year: 2015 end-page: 124 ident: bib0070 article-title: Modulation of the tumor vasculature and oxygenation to improve therapy publication-title: Pharmacol. Ther. – volume: 83 start-page: 308 year: 2016 end-page: 320 ident: bib0036 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials – volume: 81 start-page: 1460 year: 2005 end-page: 1468 ident: bib0087 article-title: Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom publication-title: Photochem. Photobiol. – volume: 224 start-page: 290 year: 2007 end-page: 299 ident: bib0027 article-title: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 publication-title: Toxicol. Appl. Pharmacol. – volume: 18 start-page: 146 year: 2020 ident: bib0097 article-title: The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer publication-title: J. Nanobiotechnol. – volume: 114 start-page: 307 year: 1992 end-page: 311 ident: bib0033 article-title: Clinical use of photodynamic therapy in gynecologic tumor patients–antibody-targeted photodynamic laser therapy as a new oncologic treatment procedure publication-title: Zentralbl. Gynakol. – volume: 12 start-page: 232 year: 2020 ident: bib0072 article-title: Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer publication-title: Pharmaceutics – volume: 9 start-page: 1410 year: 2018 ident: bib0003 article-title: Progress and challenges towards targeted delivery of cancer therapeutics publication-title: Nat. Commun. – volume: 33 start-page: 241 year: 2018 end-page: 251 ident: bib0009 article-title: Chemotherapy-induced genotoxic damage to bone marrow cells: long-term implications publication-title: Mutagenesis – volume: 4 start-page: 91 year: 2020 end-page: 106 ident: bib0014 article-title: Liposome-templated indocyanine green j- aggregates for publication-title: Nanotheranostics – volume: 53 start-page: 2034 year: 2018 end-page: 2046 ident: bib0034 article-title: Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma publication-title: Int. J. Oncol. – volume: 10 start-page: 462 year: 2020 end-page: 483 ident: bib0110 article-title: Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications publication-title: Theranostics – volume: 157 start-page: 142 year: 2020 end-page: 160 ident: bib0064 article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers publication-title: Adv. Drug Deliv. Rev. – volume: 9 start-page: 14769 year: 2019 ident: bib0106 article-title: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis publication-title: Sci. Rep. – volume: 9 start-page: 6885 year: 2019 end-page: 6900 ident: bib0116 article-title: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery publication-title: Theranostics – volume: 5 start-page: 34 year: 2017 ident: bib0066 article-title: The role of angiogenesis in cancer treatment publication-title: Biomedicines – volume: 60 start-page: 1615 year: 2008 end-page: 1626 ident: bib0037 article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics publication-title: Adv. Drug Deliv. Rev. – volume: 75 start-page: 5014 year: 2015 end-page: 5022 ident: bib0001 article-title: Mechanisms of cancer cell dormancy–another hallmark of cancer? publication-title: Cancer Res. – volume: 72 start-page: 521 year: 2017 end-page: 533 ident: bib0008 article-title: Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors publication-title: Clin. Radiol. – volume: 61 start-page: 407 year: 1990 end-page: 411 ident: bib0077 article-title: Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency publication-title: Br. J. Cancer – volume: 8 start-page: 655 year: 2012 end-page: 664 ident: bib0082 article-title: EGFR-mediated intracellular delivery of pc 4 nanoformulation for targeted photodynamic therapy of cancer: publication-title: Nanomedicine – volume: 479 start-page: 23 year: 2020 end-page: 30 ident: bib0104 article-title: Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities publication-title: Cancer Lett. – volume: 14 start-page: 15 year: 2003 end-page: 22 ident: bib0032 article-title: Clinical efficacy of methyl aminolevulinate (Metvix) photodynamic therapy publication-title: J. Dermatolog. Treat. – volume: 153 start-page: 198 year: 2011 end-page: 205 ident: bib0075 article-title: Targeted drug delivery to tumors: myths, reality and possibility publication-title: J. Control Release – volume: 5 year: 2018 ident: bib0118 article-title: Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single nir irradiation publication-title: Adv. Sci. – volume: 30 start-page: 375 year: 1987 end-page: 380 ident: bib0080 article-title: Photodynamic therapy of solid tumors publication-title: Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. – volume: 8 start-page: 139 year: 2019 end-page: 146 ident: bib0056 article-title: Nutrient deprivation modulates the metastatic potential of breast cancer cells publication-title: Rep. Biochem. Mol. Biol. – volume: 19 start-page: 129 year: 2014 end-page: 136 ident: bib0060 article-title: Passive lung-targeted drug delivery systems via intravenous administration publication-title: Pharm. Dev. Technol. – volume: 8 start-page: 16673 year: 2018 ident: bib0093 article-title: Enhanced EPR directed and imaging guided photothermal therapy using vitamin e modified toco-photoxil publication-title: Sci. Rep. – volume: 12 start-page: 134 year: 2019 ident: bib0069 article-title: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy publication-title: J. Hematol. Oncol. – volume: 5 start-page: 1022 year: 2019 end-page: 1028 ident: bib0085 article-title: Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials) publication-title: Eur. Urol. Focus – volume: 12 start-page: e1583 year: 2020 ident: bib0117 article-title: Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers publication-title: WIREs Nanomed. Nanobiotechnol. – year: 2019 ident: bib0050 article-title: Size-dependent EPR effect of polymeric nanoparticles on tumor targeting publication-title: Advanced Healthcare Materials – volume: 8 start-page: 215 year: 2001 end-page: 222 ident: bib0105 article-title: A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding publication-title: Drug Deliv. – volume: 31 year: 2020 ident: bib0098 article-title: Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy publication-title: Nanotechnology – volume: 12 start-page: 176 year: 2012 end-page: 184 ident: bib0013 article-title: Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis publication-title: Curr. Top. Med. Chem. – volume: 2012 year: 2012 ident: bib0010 article-title: Cancer treatment using peptides: current therapies and future prospects publication-title: J. Amino Acids – volume: 1 start-page: 346 year: 2017 end-page: 357 ident: bib0035 article-title: Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials publication-title: Nanotheranostics – volume: 11 start-page: 9567 year: 2017 end-page: 9569 ident: bib0002 article-title: New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics publication-title: ACS Nano – volume: 141 start-page: 769 year: 2015 end-page: 784 ident: bib0038 article-title: Cancer active targeting by nanoparticles: a comprehensive review of literature publication-title: J. Cancer Res. Clin. Oncol. – volume: 2 start-page: 904 year: 2014 end-page: 908 ident: bib0019 article-title: Passive targeting of nanoparticles to cancer: a comprehensive review of the literature publication-title: Mol. Clin. Oncol. – volume: 8 start-page: 2876 year: 2020 end-page: 2886 ident: bib0102 article-title: An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles publication-title: J. Mater. Chem. B – volume: 10 start-page: 567 year: 2020 end-page: 584 ident: bib0043 article-title: Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect publication-title: Theranostics – start-page: 1 year: 2022 end-page: 31 ident: bib0006 article-title: Limits of conventional cancer chemotherapy publication-title: Drug Delivery in Oncology – volume: 11 start-page: e1519 year: 2019 ident: bib0040 article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design publication-title: WIREs Nanomed. Nanobiotechnol. – volume: 14 start-page: 15193 year: 2020 end-page: 15203 ident: bib0096 article-title: Nanoparticles yield increased drug uptake and therapeutic efficacy upon sequential near-infrared irradiation publication-title: ACS Nano – volume: 33 year: 2021 ident: bib0114 article-title: A review of advanced nanoformulations in phototherapy for cancer therapeutics publication-title: Photodiagnosis Photodyn. Ther. – volume: 46 start-page: 6387 year: 1986 end-page: 6392 ident: bib0004 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs publication-title: Cancer Res – volume: 510 start-page: 240 year: 2016 end-page: 249 ident: bib0020 article-title: Berberine as a photosensitizing agent for antitumoral photodynamic therapy: insights into its association to low density lipoproteins publication-title: Int. J. Pharm. – volume: 8 start-page: 255 year: 2016 end-page: 270 ident: bib0047 article-title: Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature publication-title: WIREs Nanomed. Nanobiotechnol. – volume: 6 start-page: 3954 year: 2012 end-page: 3966 ident: bib0046 article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates publication-title: ACS Nano – reference: Benefits of Nanotechnology for Cancer -, National Cancer Institute, 2017. – volume: 11 start-page: 101 year: 2016 end-page: 106 ident: bib0058 article-title: HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage iv prostate cancer and extensive lung and bone metastases publication-title: Target Oncol. – volume: 27 year: 2017 ident: bib0063 article-title: Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging publication-title: Adv. Funct. Mater. – volume: 88 start-page: 53 year: 2012 end-page: 71 ident: bib0053 article-title: Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 6 start-page: 79 year: 2017 end-page: 90 ident: bib0092 article-title: Advanced smart-photosensitizers for more effective cancer treatment publication-title: Biomater. Sci. – volume: 92 start-page: 219 year: 2019 end-page: 228 ident: bib0094 article-title: Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy publication-title: Acta Biomater. – volume: 42 start-page: 728 year: 2010 end-page: 735 ident: bib0030 article-title: Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial publication-title: Lasers Surg. Med. – volume: 18 start-page: 1557 year: 2020 end-page: 1567 ident: bib0016 article-title: Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review publication-title: Environ. Chem. Lett. – reference: (2019). – volume: 167 start-page: 315 year: 2013 end-page: 321 ident: bib0089 article-title: Tumor delivery of photofrin® by PLL-g-PEG for photodynamic therapy publication-title: J. Control Release – volume: 10 start-page: 761 year: 2018 end-page: 774 ident: bib0112 article-title: Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy publication-title: NPG Asia Mater. – volume: 11 start-page: 427 year: 2020 end-page: 437 ident: bib0100 article-title: A promising anticancer drug: a photosensitizer based on the porphyrin skeleton publication-title: RSC Med. Chem. – volume: 26 start-page: 784 year: 2018 end-page: 792 ident: bib0051 article-title: The effect of size and shape of RNA nanoparticles on biodistribution publication-title: Molecular Therapy – volume: 5 start-page: 112 year: 2008 end-page: 119 ident: bib0088 article-title: Photofrin photodynamic therapy: 2.0mg/kg or not 2.0mg/kg that is the question publication-title: Photodiagnosis Photodyn. Ther. – volume: 9 start-page: 823 year: 2018 end-page: 832 ident: bib0091 article-title: Photodynamic therapy of cancer with liposomal photosensitizers publication-title: Ther. Deliv. – volume: 9 start-page: 4957 year: 2015 end-page: 4967 ident: bib0049 article-title: Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers publication-title: ACS Nano – volume: 17 start-page: 50 year: 2019 ident: bib0079 article-title: Gelatin–chlorin e6 conjugate for publication-title: J. Nanobiotechnol. – volume: 21 start-page: 62 year: 2021 ident: bib0054 article-title: The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment publication-title: Cancer Cell Int. – volume: 7 start-page: 16106 year: 2017 ident: bib0076 article-title: A new approach to deliver anti-cancer nanodrugs with reduced off-target toxicities and improved efficiency by temporarily blunting the reticuloendothelial system with intralipid publication-title: Sci. Rep. – volume: 4 start-page: 156 year: 2020 end-page: 172 ident: bib0055 article-title: Supramolecular polysaccharide nanotheranostics that inhibit cancer cells growth and monitor targeted therapy response publication-title: Nanotheranostics – volume: 6 start-page: 4483 year: 2012 end-page: 4493 ident: bib0052 article-title: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells multicellular spheroids and tumors publication-title: ACS Nano – volume: 24 start-page: 3831 year: 2012 end-page: 3837 ident: bib0005 article-title: Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells publication-title: Adv. Mater. – volume: 16 start-page: 1487 year: 2017 end-page: 1496 ident: bib0012 article-title: Photodynamic therapy using photosensitizer-encapsulated polymeric nanoparticle to overcome ATP-binding cassette transporter subfamily g2 function in pancreatic cancer publication-title: Mol. Cancer Ther. – volume: 7 year: 2020 ident: bib0095 article-title: Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse publication-title: Adv. Sci. – reference: Alexander V Kabanov, William C. Zamboni, Liposomal doxorubicin and pluronic combination for cancer therapy. – reference: . – volume: 110 start-page: 1698 year: 2014 end-page: 1704 ident: bib0026 article-title: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer publication-title: Br. J. Cancer – volume: 20 start-page: 291 year: 2019 end-page: 299 ident: bib0108 article-title: Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy publication-title: J. Zhejiang Univ. Sci. B – volume: 91 start-page: 3 year: 2015 end-page: 6 ident: bib0103 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv. Drug. Deliv. Rev. – volume: 238 start-page: 58 year: 2016 end-page: 70 ident: bib0071 article-title: Accumulating nanoparticles by EPR: a route of no return publication-title: J. Controll. Release – volume: 79 start-page: 2282 year: 1997 end-page: 2308 ident: bib0028 article-title: 5-Aminolevulinic acid-based photodynamic therapy publication-title: Clin. Res. Future Chall. Cancer – volume: 9 year: 2017 ident: bib0007 article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism publication-title: Sci. Transl. Med. – volume: 40 start-page: 578 year: 2014 end-page: 584 ident: bib0059 article-title: Liposomal nanomedicines in the treatment of prostate cancer publication-title: Cancer Treat. Rev. – volume: 5 start-page: 1022 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0085 article-title: Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials) publication-title: Eur. Urol. Focus doi: 10.1016/j.euf.2018.04.003 – volume: 79 start-page: 2282 year: 1997 ident: 10.1016/j.pdpdt.2022.102915_bib0028 article-title: 5-Aminolevulinic acid-based photodynamic therapy publication-title: Clin. Res. Future Chall. Cancer – volume: 21 start-page: 62 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0054 article-title: The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01719-5 – volume: 157 start-page: 142 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0064 article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.005 – volume: 5 start-page: 112 year: 2008 ident: 10.1016/j.pdpdt.2022.102915_bib0088 article-title: Photofrin photodynamic therapy: 2.0mg/kg or not 2.0mg/kg that is the question publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2008.05.004 – volume: 53 start-page: 64 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0068 article-title: The evolving role of lymphatics in cancer metastasis publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2018.04.008 – volume: 12 start-page: 176 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0013 article-title: Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802612799078883 – volume: 8 start-page: 655 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0082 article-title: EGFR-mediated intracellular delivery of pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies publication-title: Nanomedicine doi: 10.1016/j.nano.2011.09.012 – start-page: 1 year: 2022 ident: 10.1016/j.pdpdt.2022.102915_bib0006 article-title: Limits of conventional cancer chemotherapy – volume: 18 start-page: 1557 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0016 article-title: Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01022-9 – volume: 27 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0063 article-title: Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging publication-title: Adv. Funct. Mater. – volume: 238 start-page: 58 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0071 article-title: Accumulating nanoparticles by EPR: a route of no return publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2016.07.028 – volume: 7 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0095 article-title: Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse publication-title: Adv. Sci. doi: 10.1002/advs.202001088 – volume: 8 start-page: 255 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0047 article-title: Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1362 – volume: 65 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0111 article-title: Nanobubbles for tumors: imaging and drug carriers publication-title: J. Drug Deliv. Sci. Technol. – volume: 18 start-page: 2637 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0107 article-title: Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00495 – volume: 12 start-page: 232 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0072 article-title: Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12030232 – volume: 11 start-page: e1519 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0040 article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1519 – volume: 6 start-page: 3954 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0046 article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates publication-title: ACS Nano doi: 10.1021/nn300149c – volume: 7 start-page: 16106 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0076 article-title: A new approach to deliver anti-cancer nanodrugs with reduced off-target toxicities and improved efficiency by temporarily blunting the reticuloendothelial system with intralipid publication-title: Sci. Rep. doi: 10.1038/s41598-017-16293-6 – volume: 10 start-page: 462 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0110 article-title: Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications publication-title: Theranostics doi: 10.7150/thno.37593 – volume: 9 start-page: 1410 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0003 article-title: Progress and challenges towards targeted delivery of cancer therapeutics publication-title: Nat. Commun. doi: 10.1038/s41467-018-03705-y – ident: 10.1016/j.pdpdt.2022.102915_bib0061 – volume: 40 start-page: 578 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0059 article-title: Liposomal nanomedicines in the treatment of prostate cancer publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2013.10.005 – volume: 81 start-page: 1460 year: 2005 ident: 10.1016/j.pdpdt.2022.102915_bib0087 article-title: Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom publication-title: Photochem. Photobiol. doi: 10.1562/2005-05-04-RA-513 – volume: 64 start-page: 1020 issue: 5 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0015 article-title: Nanoparticles as a drug delivery systems publication-title: Pharmacol. Rep. doi: 10.1016/S1734-1140(12)70901-5 – volume: 13 start-page: 392 year: 2002 ident: 10.1016/j.pdpdt.2022.102915_bib0022 article-title: Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer publication-title: Bioconjugate Chem. doi: 10.1021/bc025516h – volume: 9 start-page: 4957 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0049 article-title: Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers publication-title: ACS Nano doi: 10.1021/nn5070259 – volume: 20 start-page: 291 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0108 article-title: Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1800508 – volume: 16 start-page: 1487 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0012 article-title: Photodynamic therapy using photosensitizer-encapsulated polymeric nanoparticle to overcome ATP-binding cassette transporter subfamily g2 function in pancreatic cancer publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-16-0642 – volume: 107 start-page: 369 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0023 article-title: Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2018.08.053 – start-page: 1 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0065 article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors publication-title: Expert Opin. Drug Deliv. – volume: 65 start-page: 398 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0084 article-title: The novel polymeric systems for photodynamic therapy technique publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.01.019 – volume: 17 start-page: 50 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0079 article-title: Gelatin–chlorin e6 conjugate for in vivo photodynamic therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0475-1 – volume: 60 start-page: 1615 year: 2008 ident: 10.1016/j.pdpdt.2022.102915_bib0037 article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.08.005 – volume: 12 start-page: 134 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0069 article-title: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0818-2 – volume: 8 start-page: 2214 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0090 article-title: Liposomal lapatinib in combination with low-dose photodynamic therapy for the treatment of glioma publication-title: J. Clin. Med. doi: 10.3390/jcm8122214 – volume: 6 start-page: 4483 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0052 article-title: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells multicellular spheroids and tumors in vivo publication-title: ACS Nano doi: 10.1021/nn301282m – volume: 46 start-page: 6387 issue: 12–Part 1 year: 1986 ident: 10.1016/j.pdpdt.2022.102915_bib0004 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs publication-title: Cancer Res – volume: 106 start-page: 1098 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0021 article-title: Photodynamic therapy – mechanisms, photosensitizers and combinations publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.07.049 – volume: 83 start-page: 308 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0036 article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.006 – volume: 26 start-page: 784 issue: 3 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0051 article-title: The effect of size and shape of RNA nanoparticles on biodistribution publication-title: Molecular Therapy doi: 10.1016/j.ymthe.2017.12.018 – volume: 9 start-page: 6885 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0116 article-title: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery publication-title: Theranostics doi: 10.7150/thno.36510 – volume: 19 start-page: 129 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0060 article-title: Passive lung-targeted drug delivery systems via intravenous administration publication-title: Pharm. Dev. Technol. doi: 10.3109/10837450.2012.757782 – volume: 153 start-page: 198 year: 2011 ident: 10.1016/j.pdpdt.2022.102915_bib0075 article-title: Targeted drug delivery to tumors: myths, reality and possibility publication-title: J. Control Release doi: 10.1016/j.jconrel.2011.06.001 – volume: 31 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0098 article-title: Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy publication-title: Nanotechnology doi: 10.1088/1361-6528/ab6fd5 – volume: 8 start-page: 16673 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0093 article-title: Enhanced EPR directed and imaging guided photothermal therapy using vitamin e modified toco-photoxil publication-title: Sci. Rep. doi: 10.1038/s41598-018-34898-3 – volume: 7 start-page: 771 year: 2008 ident: 10.1016/j.pdpdt.2022.102915_bib0048 article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2614 – volume: 25 start-page: 1377 year: 1993 ident: 10.1016/j.pdpdt.2022.102915_bib0081 article-title: Biodistribution of photosensitizing agents publication-title: Int. J. Biochem. doi: 10.1016/0020-711X(93)90685-8 – volume: 13 start-page: 2992 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0011 article-title: Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers publication-title: Cancers doi: 10.3390/cancers13122992 – volume: 24 start-page: 3831 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0005 article-title: Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells publication-title: Adv. Mater. doi: 10.1002/adma.201103550 – volume: 8 start-page: 2876 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0102 article-title: An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00235F – volume: 6 start-page: 1041 year: 2009 ident: 10.1016/j.pdpdt.2022.102915_bib0039 article-title: Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery publication-title: Mol. Pharm. doi: 10.1021/mp900090z – volume: 14 start-page: 5121 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0017 article-title: Supramolecular aggregation-induced emission nanodots with programmed tumor microenvironment responsiveness for image-guided orthotopic pancreatic cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c02197 – volume: 75 start-page: 5014 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0001 article-title: Mechanisms of cancer cell dormancy–another hallmark of cancer? publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1370 – volume: 33 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0114 article-title: A review of advanced nanoformulations in phototherapy for cancer therapeutics publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2021.102205 – volume: 39 start-page: 146 year: 1979 ident: 10.1016/j.pdpdt.2022.102915_bib0078 article-title: Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue publication-title: Cancer Res. – volume: 6 start-page: 79 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0092 article-title: Advanced smart-photosensitizers for more effective cancer treatment publication-title: Biomater. Sci. doi: 10.1039/C7BM00872D – volume: 34 start-page: 15343 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0018 article-title: Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02946 – volume: 23 start-page: 1341 year: 2003 ident: 10.1016/j.pdpdt.2022.102915_bib0024 article-title: Clinical study of photofrin photodynamic therapy for advanced cancers publication-title: Di Yi Jun Yi Da Xue Xue Bao – volume: 72 start-page: 5566 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0042 article-title: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-1683 – volume: 88 start-page: 53 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0053 article-title: Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.88.53 – volume: 2 start-page: 904 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0019 article-title: Passive targeting of nanoparticles to cancer: a comprehensive review of the literature publication-title: Mol. Clin. Oncol. doi: 10.3892/mco.2014.356 – volume: 63 start-page: 136 year: 2011 ident: 10.1016/j.pdpdt.2022.102915_bib0067 article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.04.009 – volume: 218 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0099 article-title: Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119330 – volume: 114 start-page: 307 year: 1992 ident: 10.1016/j.pdpdt.2022.102915_bib0033 article-title: Clinical use of photodynamic therapy in gynecologic tumor patients–antibody-targeted photodynamic laser therapy as a new oncologic treatment procedure publication-title: Zentralbl. Gynakol. – volume: 10 start-page: 761 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0112 article-title: Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0066-x – volume: 42 start-page: 728 year: 2010 ident: 10.1016/j.pdpdt.2022.102915_bib0030 article-title: Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial publication-title: Lasers Surg. Med. doi: 10.1002/lsm.20984 – volume: 11 start-page: 9567 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0002 article-title: New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics publication-title: ACS Nano doi: 10.1021/acsnano.7b07214 – volume: 106 start-page: 3179 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0041 article-title: Parameters affecting the enhanced permeability and retention effect: the need for patient selection publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2017.06.019 – volume: 7 start-page: 13193 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0115 article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy publication-title: Nat. Commun. doi: 10.1038/ncomms13193 – volume: 8 start-page: 6004 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0044 article-title: Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles publication-title: ACS Nano doi: 10.1021/nn501134q – volume: 167 start-page: 315 year: 2013 ident: 10.1016/j.pdpdt.2022.102915_bib0089 article-title: Tumor delivery of photofrin® by PLL-g-PEG for photodynamic therapy publication-title: J. Control Release doi: 10.1016/j.jconrel.2013.02.016 – volume: 321 start-page: 589 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0101 article-title: Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2020.02.043 – volume: 479 start-page: 23 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0104 article-title: Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities publication-title: Cancer Lett. doi: 10.1016/j.canlet.2020.03.017 – volume: 72 start-page: 521 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0008 article-title: Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors publication-title: Clin. Radiol. doi: 10.1016/j.crad.2017.04.003 – volume: 4 start-page: 156 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0055 article-title: Supramolecular polysaccharide nanotheranostics that inhibit cancer cells growth and monitor targeted therapy response publication-title: Nanotheranostics doi: 10.7150/ntno.44703 – volume: 12 start-page: e1583 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0117 article-title: Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1583 – year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0050 article-title: Size-dependent EPR effect of polymeric nanoparticles on tumor targeting – volume: 9 start-page: 823 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0091 article-title: Photodynamic therapy of cancer with liposomal photosensitizers publication-title: Ther. Deliv. doi: 10.4155/tde-2018-0050 – volume: 11 start-page: 101 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0058 article-title: HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage iv prostate cancer and extensive lung and bone metastases publication-title: Target Oncol. doi: 10.1007/s11523-015-0379-4 – volume: 33 start-page: 241 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0009 article-title: Chemotherapy-induced genotoxic damage to bone marrow cells: long-term implications publication-title: Mutagenesis doi: 10.1093/mutage/gey014 – volume: 14 start-page: 15193 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0096 article-title: Nanoparticles yield increased drug uptake and therapeutic efficacy upon sequential near-infrared irradiation publication-title: ACS Nano doi: 10.1021/acsnano.0c05425 – volume: 2012 year: 2012 ident: 10.1016/j.pdpdt.2022.102915_bib0010 article-title: Cancer treatment using peptides: current therapies and future prospects publication-title: J. Amino Acids doi: 10.1155/2012/967347 – volume: 4 start-page: 91 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0014 article-title: Liposome-templated indocyanine green j- aggregates for in vivo near infrared imaging and stable photothermal heating publication-title: Nanotheranostics doi: 10.7150/ntno.41737 – volume: 15 start-page: 842 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0073 article-title: In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer publication-title: Nano Lett. doi: 10.1021/nl5045378 – volume: 5 start-page: 34 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0066 article-title: The role of angiogenesis in cancer treatment publication-title: Biomedicines doi: 10.3390/biomedicines5020034 – volume: 141 start-page: 769 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0038 article-title: Cancer active targeting by nanoparticles: a comprehensive review of literature publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-014-1767-3 – volume: 153 start-page: 107 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0070 article-title: Modulation of the tumor vasculature and oxygenation to improve therapy publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2015.06.006 – volume: 9 start-page: 14769 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0106 article-title: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis publication-title: Sci. Rep. doi: 10.1038/s41598-019-51361-z – volume: 30 start-page: 375 year: 1987 ident: 10.1016/j.pdpdt.2022.102915_bib0080 article-title: Photodynamic therapy of solid tumors publication-title: Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem. – volume: 9 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0007 article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan0026 – volume: 17 start-page: 738 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0045 article-title: Transport of drugs from blood vessels to tumour tissue publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.93 – ident: 10.1016/j.pdpdt.2022.102915_bib0062 – volume: 510 start-page: 240 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0020 article-title: Berberine as a photosensitizing agent for antitumoral photodynamic therapy: insights into its association to low density lipoproteins publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.06.009 – volume: 8 start-page: 215 year: 2001 ident: 10.1016/j.pdpdt.2022.102915_bib0105 article-title: A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding publication-title: Drug Deliv. doi: 10.1080/107175401317245895 – volume: 53 start-page: 2034 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0034 article-title: Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma publication-title: Int. J. Oncol. – volume: 92 start-page: 219 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0094 article-title: Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.05.008 – volume: 14 start-page: 15 issue: 3 year: 2003 ident: 10.1016/j.pdpdt.2022.102915_bib0032 article-title: Clinical efficacy of methyl aminolevulinate (Metvix) photodynamic therapy publication-title: J. Dermatolog. Treat. doi: 10.1080/jdt.14.s3.15.22 – volume: 81 start-page: 1505 year: 2005 ident: 10.1016/j.pdpdt.2022.102915_bib0083 article-title: Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels publication-title: Photochem. Photobiol. doi: 10.1562/2005-02-23-RA-448 – volume: 18 start-page: 146 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0097 article-title: The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-00697-0 – volume: 54 start-page: 1093 year: 1991 ident: 10.1016/j.pdpdt.2022.102915_bib0025 article-title: Preclinical examination of first and second generation photosensitizers used in photodynamic therapy publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1991.tb02133.x – volume: 224 start-page: 290 year: 2007 ident: 10.1016/j.pdpdt.2022.102915_bib0027 article-title: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2007.01.025 – volume: 119 start-page: 845 year: 2013 ident: 10.1016/j.pdpdt.2022.102915_bib0031 article-title: Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors publication-title: J. Neurosurg. doi: 10.3171/2013.7.JNS13415 – volume: 7 start-page: 61 year: 2010 ident: 10.1016/j.pdpdt.2022.102915_bib0029 article-title: Oncologic photodynamic therapy photosensitizers: a clinical review publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/j.pdpdt.2010.02.001 – volume: 1 start-page: 346 year: 2017 ident: 10.1016/j.pdpdt.2022.102915_bib0035 article-title: Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials publication-title: Nanotheranostics doi: 10.7150/ntno.19380 – volume: 60 start-page: 1153 year: 2008 ident: 10.1016/j.pdpdt.2022.102915_bib0109 article-title: Microbubbles in ultrasound-triggered drug and gene delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.005 – volume: 6 start-page: 762 year: 2016 ident: 10.1016/j.pdpdt.2022.102915_bib0113 article-title: Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics publication-title: Theranostics doi: 10.7150/thno.14988 – volume: 9 start-page: 114 year: 2021 ident: 10.1016/j.pdpdt.2022.102915_bib0057 article-title: Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics publication-title: Biomedicines doi: 10.3390/biomedicines9020114 – volume: 197 start-page: 284 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0074 article-title: A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.01.025 – volume: 10 start-page: 567 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0043 article-title: Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect publication-title: Theranostics doi: 10.7150/thno.36777 – volume: 61 start-page: 407 year: 1990 ident: 10.1016/j.pdpdt.2022.102915_bib0077 article-title: Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency publication-title: Br. J. Cancer doi: 10.1038/bjc.1990.89 – volume: 1 start-page: 27 year: 2004 ident: 10.1016/j.pdpdt.2022.102915_bib0086 article-title: Photosensitizers in clinical PDT publication-title: Photodiagnosis Photodyn. Ther. doi: 10.1016/S1572-1000(04)00007-9 – volume: 5 year: 2018 ident: 10.1016/j.pdpdt.2022.102915_bib0118 article-title: Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single nir irradiation publication-title: Adv. Sci. doi: 10.1002/advs.201870050 – volume: 110 start-page: 1698 year: 2014 ident: 10.1016/j.pdpdt.2022.102915_bib0026 article-title: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.95 – volume: 91 start-page: 3 year: 2015 ident: 10.1016/j.pdpdt.2022.102915_bib0103 article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity publication-title: Adv. Drug. Deliv. Rev. doi: 10.1016/j.addr.2015.01.002 – volume: 8 start-page: 139 year: 2019 ident: 10.1016/j.pdpdt.2022.102915_bib0056 article-title: Nutrient deprivation modulates the metastatic potential of breast cancer cells publication-title: Rep. Biochem. Mol. Biol. – volume: 11 start-page: 427 year: 2020 ident: 10.1016/j.pdpdt.2022.102915_bib0100 article-title: A promising anticancer drug: a photosensitizer based on the porphyrin skeleton publication-title: RSC Med. Chem. doi: 10.1039/C9MD00558G |
SSID | ssj0034904 |
Score | 2.5890608 |
SecondaryResourceType | review_article |
Snippet | •This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the... Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102915 |
SubjectTerms | EPR Extravasation Microbubble Microenvironment Nanoparticles PDT Pharmacokinetics Photodynamic Therapy PTT Ultrasound |
Title | Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1572100022002010 https://dx.doi.org/10.1016/j.pdpdt.2022.102915 https://www.ncbi.nlm.nih.gov/pubmed/35597441 https://www.proquest.com/docview/2667784018 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-1597 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0034904 issn: 1572-1000 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1873-1597 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0034904 issn: 1572-1000 databaseCode: ACRLP dateStart: 20040501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-1597 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0034904 issn: 1572-1000 databaseCode: AIKHN dateStart: 20040501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-1597 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0034904 issn: 1572-1000 databaseCode: .~1 dateStart: 20040501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-1597 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0034904 issn: 1572-1000 databaseCode: AKRWK dateStart: 20040501 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXPaCeOxCeVSDtHAilMTOi1uFirq7ggNbJG6WHbuiCNKotIde-O3M2EkFEg-JWxLbeYzHM9_En8eM_VY8NwnC1oD8ayBEhHYwJZZ5ZiwiiFjzIf2HvLxK-jfi7218u8TOm7UwRKusbb-36c5a11c6tTQ71WjU-R_GGL24BC6EedwyK8r-hTp98rygeXCRuy0EqXJAtZvMQ47jVZnKEKEyiiiFQU57477vnT5Cn84LXayx1Ro-Qte_4TpbsuUGO3ydKhgGPk8AHMH1myzcm-yuV965CX-o0B5bXzYHVRqYEHamWuAJHmfQBRzeMFSFv8F4AghvATV1ZGA6e8RjTyJH1wd6DqUqMfyuWXY_2eCiNzjvB_VOC0EhxOk0SNJI80SnnCtrogSjjDDMtTaIzkSWG4uSUVjIzWlss0wgpCgyFaL_y8NCI6b5xZbLcWm3GVgrVKS0KhRNqWqu8kQMVZLFqVAUu7RY1AhYFvX302YYD7Khm91L1yuSekX6Xmmx40Wjyifh-Ly6aHpONutLUWQSncTnzZJFszcq-HXDg0Y9JA5OmnFRpR3PniSinzTFEDrMWmzL683iA7iL5US4893H7rIfdOYJb3tseTqZ2X1ESFPddkOgzVa6f_71r14AzsgOhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5VAuiLY8lkI7lSgnoiWx8-pthUBLgT2UReJm2bFXLGqz0Xb3wL9nJk5WIPGQeotiTxKP7Zlv4s9jgAMtcpsQbA3YvwZSRmQHU2aZZ9YRgoiNGPN_yKthMriRv27j2xU4affCMK2ysf3eptfWurnTa7TZqyaT3nUYU_RSJ3BhzMPbrFZlTDa5A6v984vBsDXIQub1KYJcP2CBNvlQTfOqbGWZUxlFnMUg5-NxX3ZQrwHQ2hGdbcB6gyCx7z_yI6y48hP8eJotGEc-VQAe4u9nibg_w91peVev-WNFJtn5sgfUpcUZw2euhZ7j8RP7SDMcx7rwD5jOkBAu0mCdWJwv_tK155GT90PzgKUuKQJviHabMDo7HZ0MguawhaCQ8ngeJGlkRGJSIbSzUUKBRhjmxlgCaDLLrSPNaCoU9jh2WSYJVRSZDkndeVgYgjVb0CmnpdsBdE7qSBtdaF5VNULniRzrJItTqTl86ULUKlgVTfv5PIw_qmWc3au6VxT3ivK90oWjpVDl83C8XV22PafaLaakMkV-4m2xZCn2bBS-L_i9HR6K5icvuujSTRf_FAGgNKUoOsy6sO3HzbIBog7nZLj7v6_9Bh8Go6tLdXk-vPgCa1zi-W970JnPFm6fANPcfG0mxCP1AREv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Permeability+and+Retention+Effect%3A+A+key+facilitator+for+solid+tumor+targeting+by+nanoparticles&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Shinde%2C+Vinod+Ravasaheb&rft.au=Revi%2C+Neeraja&rft.au=Murugappan%2C+Sivasubramanian&rft.au=Singh%2C+Surya+Prakash&rft.date=2022-09-01&rft.eissn=1873-1597&rft.spage=102915&rft_id=info:doi/10.1016%2Fj.pdpdt.2022.102915&rft_id=info%3Apmid%2F35597441&rft.externalDocID=35597441 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon |