Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles

•This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently desig...

Full description

Saved in:
Bibliographic Details
Published inPhotodiagnosis and photodynamic therapy Vol. 39; p. 102915
Main Authors Shinde, Vinod Ravasaheb, Revi, Neeraja, Murugappan, Sivasubramanian, Singh, Surya Prakash, Rengan, Aravind Kumar
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text
ISSN1572-1000
1873-1597
1873-1597
DOI10.1016/j.pdpdt.2022.102915

Cover

Abstract •This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently designed nanoformulations reported to exhibit enhanced EPR effect.•A special focus has been given on combination therapy for in vitro or in vivo studies that help in achieving a synergistic EPR effect. Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
AbstractList Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
•This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the active and passive targeting and the mechanism by which they target to improve the EPR effect.•This article describes a range of recently designed nanoformulations reported to exhibit enhanced EPR effect.•A special focus has been given on combination therapy for in vitro or in vivo studies that help in achieving a synergistic EPR effect. Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
ArticleNumber 102915
Author Singh, Surya Prakash
Rengan, Aravind Kumar
Murugappan, Sivasubramanian
Shinde, Vinod Ravasaheb
Revi, Neeraja
Author_xml – sequence: 1
  givenname: Vinod Ravasaheb
  surname: Shinde
  fullname: Shinde, Vinod Ravasaheb
  organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
– sequence: 2
  givenname: Neeraja
  orcidid: 0000-0003-0810-9054
  surname: Revi
  fullname: Revi, Neeraja
  organization: Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
– sequence: 3
  givenname: Sivasubramanian
  surname: Murugappan
  fullname: Murugappan, Sivasubramanian
  organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
– sequence: 4
  givenname: Surya Prakash
  surname: Singh
  fullname: Singh, Surya Prakash
  organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
– sequence: 5
  givenname: Aravind Kumar
  orcidid: 0000-0003-3994-6760
  surname: Rengan
  fullname: Rengan, Aravind Kumar
  email: aravind@bme.iith.ac.in
  organization: Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35597441$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtPJCEURonR-Bp_gcmEpZvq4VUvJy6McWZMTGbjnlBwS-mhoATapP-9lK0bF-OCQOA7N9x7TtC-Dx4QOqdkRQltfqxXs5lNXjHCWLlhPa330DHtWl7Rum_3y7luWUUJIUfoJKU1IVz0RByiI16XgBD0GD3d-iflNRg8Q5xADdbZvMXKGxwhg882eAzjCDpf4mv8D7Z4VHoJqRwiHstKwVmD82Yq56ziI2TrH_GwxV75MKuYrXaQvqGDUbkEZ-_7KXr4dftw86e6__v77ub6vtJCkFw1LRt4M7ScKzCsKf-ktB8Gw2smut5AaVKVR25IDV0nGOO6U1RQ3lM9NIKfootd2TmG5w2kLCebNDinPIRNkqxp2rYThHYl-v09uhkmMHKOdlJxKz-GUwL9LqBjSCnCKPXSdplIjso6SYlcRMi1fBMhFxFyJ6Kw_BP7Uf7_1NWOgjKhFwtRJm1h0WNjMSBNsF_wPz_x2llvtXJF3Jf0K3o0tkk
CitedBy_id crossref_primary_10_1186_s12951_023_01820_7
crossref_primary_10_3390_pharmaceutics15051545
crossref_primary_10_3390_molecules29112643
crossref_primary_10_1016_j_fmre_2024_10_017
crossref_primary_10_3390_pharmaceutics16040463
crossref_primary_10_1016_j_ijbiomac_2024_132888
crossref_primary_10_1039_D4NR00554F
crossref_primary_10_1186_s12951_024_02309_7
crossref_primary_10_3390_pharmaceutics16040549
crossref_primary_10_1007_s12274_023_5541_1
crossref_primary_10_3390_ani14040655
crossref_primary_10_1016_j_cej_2024_157451
crossref_primary_10_1186_s40001_023_01429_4
crossref_primary_10_3390_ijms24129902
crossref_primary_10_1016_j_ijpharm_2023_123136
crossref_primary_10_1038_s41598_023_42756_0
crossref_primary_10_1021_acsabm_2c00724
crossref_primary_10_1002_adhm_202302902
crossref_primary_10_1007_s10967_025_10010_8
crossref_primary_10_3390_cancers15041075
crossref_primary_10_1002_ange_202418047
crossref_primary_10_1016_j_jddst_2024_105447
crossref_primary_10_1016_j_omtn_2024_102322
crossref_primary_10_3389_fonc_2024_1296091
crossref_primary_10_1016_j_eurpolymj_2024_112870
crossref_primary_10_1039_D4MH00068D
crossref_primary_10_1080_20415990_2024_2394012
crossref_primary_10_3390_pharmaceutics15071820
crossref_primary_10_1016_j_ijpharm_2024_124639
crossref_primary_10_1002_adhm_202400746
crossref_primary_10_1016_j_jconrel_2023_08_036
crossref_primary_10_1021_acsabm_3c00711
crossref_primary_10_1007_s11051_024_06104_1
crossref_primary_10_1007_s12032_024_02593_1
crossref_primary_10_1186_s12951_024_02944_0
crossref_primary_10_1007_s12032_025_02609_4
crossref_primary_10_1007_s13346_024_01693_9
crossref_primary_10_1007_s44174_025_00280_x
crossref_primary_10_1016_j_ijpharm_2024_124473
crossref_primary_10_1016_j_preme_2025_100018
crossref_primary_10_1021_acs_jmedchem_4c02263
crossref_primary_10_1186_s12943_024_02214_5
crossref_primary_10_1007_s13346_024_01591_0
crossref_primary_10_1080_00914037_2025_2472185
crossref_primary_10_3390_ph17101296
crossref_primary_10_1016_j_ccr_2025_216572
crossref_primary_10_1021_acs_molpharmaceut_3c00379
crossref_primary_10_1021_acsnano_4c09525
crossref_primary_10_3389_fonc_2024_1379986
crossref_primary_10_1016_j_addr_2024_115216
crossref_primary_10_1186_s12951_024_02992_6
crossref_primary_10_1186_s41181_024_00266_y
crossref_primary_10_3390_pharmaceutics15020504
crossref_primary_10_3390_bioengineering10020232
crossref_primary_10_3390_app131810156
crossref_primary_10_1007_s11307_023_01801_0
crossref_primary_10_1016_j_bbrep_2024_101713
crossref_primary_10_1016_j_ccr_2024_216207
crossref_primary_10_3390_pharmaceutics15030976
crossref_primary_10_3390_ddc3040046
crossref_primary_10_2147_DDDT_S497888
crossref_primary_10_1016_j_jconrel_2025_113613
crossref_primary_10_1186_s12951_025_03223_2
crossref_primary_10_3390_pharmaceutics14091919
crossref_primary_10_1002_adhm_202300481
crossref_primary_10_1021_acs_molpharmaceut_2c00811
crossref_primary_10_3390_molecules29112438
crossref_primary_10_1080_10717544_2024_2390022
crossref_primary_10_1002_bmm2_12112
crossref_primary_10_1002_VIW_20220059
crossref_primary_10_1016_j_gendis_2024_101441
crossref_primary_10_1016_j_mtbio_2025_101626
crossref_primary_10_1007_s12013_024_01273_1
crossref_primary_10_1016_j_jddst_2024_105515
crossref_primary_10_1007_s00210_025_03861_1
crossref_primary_10_1021_acsmacrolett_4c00306
crossref_primary_10_3390_ijms26051814
crossref_primary_10_1016_j_mtbio_2022_100358
crossref_primary_10_1016_j_cis_2024_103320
crossref_primary_10_1002_anie_202418047
Cites_doi 10.1016/j.euf.2018.04.003
10.1186/s12935-020-01719-5
10.1016/j.addr.2020.06.005
10.1016/j.pdpdt.2008.05.004
10.1016/j.coi.2018.04.008
10.2174/156802612799078883
10.1016/j.nano.2011.09.012
10.1007/s10311-020-01022-9
10.1016/j.jconrel.2016.07.028
10.1002/advs.202001088
10.1002/wnan.1362
10.1021/acs.nanolett.8b00495
10.3390/pharmaceutics12030232
10.1002/wnan.1519
10.1021/nn300149c
10.1038/s41598-017-16293-6
10.7150/thno.37593
10.1038/s41467-018-03705-y
10.1016/j.ctrv.2013.10.005
10.1562/2005-05-04-RA-513
10.1016/S1734-1140(12)70901-5
10.1021/bc025516h
10.1021/nn5070259
10.1631/jzus.B1800508
10.1158/1535-7163.MCT-16-0642
10.1016/j.athoracsur.2018.08.053
10.1016/j.ijbiomac.2014.01.019
10.1186/s12951-019-0475-1
10.1016/j.addr.2008.08.005
10.1186/s13045-019-0818-2
10.3390/jcm8122214
10.1021/nn301282m
10.1016/j.biopha.2018.07.049
10.1016/j.biomaterials.2016.01.006
10.1016/j.ymthe.2017.12.018
10.7150/thno.36510
10.3109/10837450.2012.757782
10.1016/j.jconrel.2011.06.001
10.1088/1361-6528/ab6fd5
10.1038/s41598-018-34898-3
10.1038/nrd2614
10.1016/0020-711X(93)90685-8
10.3390/cancers13122992
10.1002/adma.201103550
10.1039/D0TB00235F
10.1021/mp900090z
10.1021/acsnano.0c02197
10.1158/0008-5472.CAN-15-1370
10.1016/j.pdpdt.2021.102205
10.1039/C7BM00872D
10.1021/acs.langmuir.8b02946
10.1158/0008-5472.CAN-12-1683
10.2183/pjab.88.53
10.3892/mco.2014.356
10.1016/j.addr.2010.04.009
10.1016/j.biomaterials.2019.119330
10.1038/s41427-018-0066-x
10.1002/lsm.20984
10.1021/acsnano.7b07214
10.1016/j.xphs.2017.06.019
10.1038/ncomms13193
10.1021/nn501134q
10.1016/j.jconrel.2013.02.016
10.1016/j.jconrel.2020.02.043
10.1016/j.canlet.2020.03.017
10.1016/j.crad.2017.04.003
10.7150/ntno.44703
10.1002/wnan.1583
10.4155/tde-2018-0050
10.1007/s11523-015-0379-4
10.1093/mutage/gey014
10.1021/acsnano.0c05425
10.1155/2012/967347
10.7150/ntno.41737
10.1021/nl5045378
10.3390/biomedicines5020034
10.1007/s00432-014-1767-3
10.1016/j.pharmthera.2015.06.006
10.1038/s41598-019-51361-z
10.1126/scitranslmed.aan0026
10.1038/nrc.2017.93
10.1016/j.ijpharm.2016.06.009
10.1080/107175401317245895
10.1016/j.actbio.2019.05.008
10.1080/jdt.14.s3.15.22
10.1562/2005-02-23-RA-448
10.1186/s12951-020-00697-0
10.1111/j.1751-1097.1991.tb02133.x
10.1016/j.taap.2007.01.025
10.3171/2013.7.JNS13415
10.1016/j.pdpdt.2010.02.001
10.7150/ntno.19380
10.1016/j.addr.2008.03.005
10.7150/thno.14988
10.3390/biomedicines9020114
10.1016/j.biomaterials.2019.01.025
10.7150/thno.36777
10.1038/bjc.1990.89
10.1016/S1572-1000(04)00007-9
10.1002/advs.201870050
10.1038/bjc.2014.95
10.1016/j.addr.2015.01.002
10.1039/C9MD00558G
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022. Published by Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.pdpdt.2022.102915
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1873-1597
ExternalDocumentID 35597441
10_1016_j_pdpdt_2022_102915
S1572100022002010
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
0SF
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c440t-672b36b733aed26559119bbd352489de915a7333d05e884223c8a141391cb643
IEDL.DBID .~1
ISSN 1572-1000
1873-1597
IngestDate Sun Sep 28 04:24:33 EDT 2025
Thu Apr 03 07:09:54 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 01:18:04 EDT 2025
Fri Feb 23 02:38:40 EST 2024
Tue Aug 26 20:13:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
PTT
PDT
Microbubble
EPR
Extravasation
Microenvironment
Photodynamic Therapy
Pharmacokinetics
Ultrasound
Enhanced Permeability and Retention (EPR) effect
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-672b36b733aed26559119bbd352489de915a7333d05e884223c8a141391cb643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0810-9054
0000-0003-3994-6760
PMID 35597441
PQID 2667784018
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2667784018
pubmed_primary_35597441
crossref_citationtrail_10_1016_j_pdpdt_2022_102915
crossref_primary_10_1016_j_pdpdt_2022_102915
elsevier_sciencedirect_doi_10_1016_j_pdpdt_2022_102915
elsevier_clinicalkey_doi_10_1016_j_pdpdt_2022_102915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Photodiagnosis and photodynamic therapy
PublicationTitleAlternate Photodiagnosis Photodyn Ther
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yeh, Ramaswamy (bib0001) 2015; 75
Fang, Nakamura, Maeda (bib0067) 2011; 63
Lukianova-Hleb, Ren, Zasadzinski, Wu, Lapotko (bib0005) 2012; 24
Bazak, Houri, Achy, Hussein, Refaat (bib0019) 2014; 2
Hernot, Klibanov (bib0109) 2008; 60
Zhen, Yi, Zhao, Lou, Xia, Tang (bib0099) 2019; 218
Sun, Chen, Yu, Wang, Zhang, Zhao, Chen, He, Luo, Sun (bib0094) 2019; 92
Gullotti, Yeo (bib0039) 2009; 6
Da Silva, Rueda, Löwik, Ossendorp, Cruz (bib0036) 2016; 83
Luo, Wang, Walker, Wang, Springer, Lou, Ramamurthy, Burda, Basilion (bib0096) 2020; 14
Zhen, Tang, Chuang, Todd, Zhang, Lin, Niu, Liu, Wang, Pan, Chen, Xie (bib0044) 2014; 8
Noweski, Roosen, Lebdai, Barret, Emberton, Benzaghou, Apfelbeck, Gaillac, Gratzke, Stief, Azzouzi (bib0085) 2019; 5
Duan, Yang, Jin, Yang, Liu, Hu, Wang, Yue, Gu (bib0110) 2020; 10
Liang, Xu, Gao, Zhou, Zhang, Dai (bib0112) 2018; 10
Lim, Ma (bib0069) 2019; 12
Tang, Fan, Borst, Cheng (bib0046) 2012; 6
Siemann, Horsman (bib0070) 2015; 153
Karagiannis, Pastoriza, Wang, Harney, Entenberg, Pignatelli, Sharma, Xue, Cheng, D'Alfonso, Jones, Anampa, Rohan, Sparano, Condeelis, Oktay (bib0007) 2017; 9
Rosenblum, Joshi, Tao, Karp, Peer (bib0003) 2018; 9
Ahmadiankia, Bagheri, Fazli (bib0056) 2019; 8
Cai, Chen, Qin, Qu, Dong, Ni, Yin (bib0072) 2020; 12
Huang, Ma, Liu, Huo, Kumar, Wei, Zhang, Jin, Gan, Wang, He, Zhang, Liang (bib0052) 2012; 6
Allison, Downie, Cuenca, Hu, Childs, Sibata (bib0086) 2004; 1
Natfji, Ravishankar, Osborn, Greco (bib0041) 2017; 106
Cabral, Makino, Matsumoto, Mi, Wu, Nomoto, Toh, Yamada, Higuchi, Konishi, Kano, Nishihara, Miura, Nishiyama, Kataoka (bib0049) 2015; 9
Zhang, Wang, Yang, Sheng, Tan, Wang, Ran, Yi, Zhong, Lin, Chen (bib0118) 2018; 5
Kwiatkowski, Knap, Przystupski, Saczko, Kędzierska, Knap-Czop, Kotlińska, Michel, Kotowski, Kulbacka (bib0021) 2018; 106
Fu, Li, Liu, Chen, Zhang, Yu, Wu, Li, Du, Dang, Wu, Wei, Lin, Lei (bib0097) 2020; 18
Rajabi, Mousa (bib0066) 2017; 5
Behera, Padhi (bib0016) 2020; 18
.
Clemons, Singh, Sorolla, Chaudhari, Hubbard, Iyer (bib0018) 2018; 34
Zhang, Lin, Li, He, Du, Wang (bib0040) 2019; 11
Gomer (bib0025) 1991; 54
Reddi, Zhou, Biolo, Menegaldo, Jori (bib0077) 1990; 61
Luiza Andreazza, Vevert-Bizet, Bourg-Heckly, Sureau, José Salvador, Bonneau (bib0020) 2016; 510
Fang, Islam, Maeda (bib0064) 2020; 157
Hoya, Guterman, Miskolczi, Hopkins (bib0105) 2001; 8
Saboktakin, Tabatabaee (bib0084) 2014; 65
Baron, Malbasa, Santo-Domingo, Fu, Miller, Hanneman, Hsia, Oleinick, Colussi, Cooper (bib0030) 2010; 42
Li, Luo, Liao, Zhang, Zhou, Liu, Miao (bib0024) 2003; 23
Kessel, Woodburn (bib0081) 1993; 25
Byrne, Betancourt, Brannon-Peppas (bib0037) 2008; 60
Zou, Wang, He, Zeng, Tan, Cao, He, Zhang, Guo, Li (bib0113) 2016; 6
Bazak, Houri, El Achy, Kamel, Refaat (bib0038) 2015; 141
Master, Qi, Oleinick, Gupta (bib0082) 2012; 8
Wei, Zhao (bib0060) 2014; 19
Cheung, Ma, Karatasos, Seitsonen, Ruokolainen, Koffi, Hassan, Al-Jamal (bib0014) 2020; 4
Islam, Maeda, Fang (bib0065) 2021
Manzoor, Lindner, Landon, Park, Simnick, Dreher, Das, Hanna, Park, Chilkoti, Koning, ten Hagen, Needham, Dewhirst (bib0042) 2012; 72
Kumar, Deep (bib0104) 2020; 479
Ngoune, Peters, von Elverfeldt, Winkler, Pütz (bib0071) 2016; 238
Deepagan, Ko, Kwon, Rao, Kim, Um, Lee, Min, Lee, Choi, Shin, Suh, Park (bib0107) 2018; 18
Muragaki, Akimoto, Maruyama, Iseki, Ikuta, Nitta, Maebayashi, Saito, Okada, Kaneko, Matsumura, Kuroiwa, Karasawa, Nakazato, Kayama (bib0031) 2013; 119
Allison, Sibata (bib0088) 2008; 5
Goos, Cho, Carter, Dilling, Davydova, Mandleywala, Puttick, Gupta, Price, Quinn, Whittaker, Lewis, Davis (bib0043) 2020; 10
Maeda (bib0053) 2012; 88
Emami Nejad, Najafgholian, Rostami, Sistani, Shojaeifar, Esparvarinha, Nedaeinia, Haghjooy Javanmard, Taherian, Ahmadlou, Salehi, Sadeghi, Manian (bib0054) 2021; 21
Zheng, Li, Zhang, Lund-Katz, Chance, Glickson (bib0022) 2002; 13
Düzgüneş, Piskorz, Skupin-Mrugalska, Goslinski, Mielcarek, Konopka (bib0091) 2018; 9
Matsumura, Maeda (bib0004) 1986; 46
Wang, Zhang, Zhang, Tian, Cheng, Pan, Cui, Chang (bib0102) 2020; 8
Foley (bib0032) 2003; 14
Allison, Sibata (bib0029) 2010; 7
Chauhan, Bukhari, Ravichandran, Gupta, George, Poojari, Ingle, Rengan, Shanavas, Srivastava, De (bib0093) 2018; 8
Jasinski, Li, Guo (bib0051) 2018; 26
Dewhirst, Secomb (bib0045) 2017; 17
Kroon, Metselaar, Storm, van der Pluijm (bib0059) 2014; 40
Hu, Feng, Lu, Allison, Cuenca, Downie, Sibata (bib0087) 2005; 81
Wang, Wang, Xu, Tian, Chen (bib0074) 2019; 197
Liu, An, Jia, Wang, Wu, Zhen, Cao, Gao (bib0101) 2020; 321
Wilczewska, Niemirowicz, Markiewicz, Car (bib0015) 2012; 64
Dozono, Yanazume, Nakamura, Etrych, Chytil, Ulbrich, Fang, Arimura, Douchi, Kobayashi, Ikoma, Maeda (bib0058) 2016; 11
Kato, Jin, Lee, Ujiie, Fujino, Hu, Wada, Wu, Chen, Weersink, Kanno, Hatanaka, Hatanaka, Kaga, Matsui, Matsuno, De Perrot, Wilson, Zheng, Yasufuku (bib0034) 2018; 53
Zhao, Duan, Wang, Fei, Li (bib0117) 2020; 12
Alexander V Kabanov, William C. Zamboni, Liposomal doxorubicin and pluronic combination for cancer therapy.
Pegaz, Debefve, Borle, Ballini, Wagnières, Spaniol, Albrecht, Scheglmann, Nifantiev, van den Bergh, Konan (bib0083) 2005; 81
Deshpande, Ramesh, Nandi, Nguyen, Brouillard, Kulkarni (bib0055) 2020; 4
Wang, Luo, Basilion (bib0011) 2021; 13
Ujiie, Ding, Fan, Kato, Lee, Fujino, Kinoshita, Lee, Waddell, Keshavjee, Wilson, Zheng, Chen, Yasufuku (bib0023) 2019; 107
Rengan, Bukhari, Pradhan, Malhotra, Banerjee, Srivastava, De (bib0073) 2015; 15
Roh, Kim, Kim, Na, Park, Choi (bib0012) 2017; 16
Miller, Baron, Scull, Hsia, Berlin, McCormick, Colussi, Kenney, Cooper, Oleinick (bib0027) 2007; 224
Liu, Ye, Lu, Chen, Tseng, Lo, Ho (bib0076) 2017; 7
Chandel, Sharma, Chawla, Sachdeva, Shukla (bib0106) 2019; 9
May, Donaldson, Gynn, Morse (bib0009) 2018; 33
Fisher, Obaid, Niu, Foltz, Goldstein, Hasan, Lilge (bib0090) 2019; 8
Zhang, He, Yu, Li, Liu, Zhou, Liu (bib0100) 2020; 11
Yang, Hou, Sun, Wu, Xu, Xiong, Chai, Liu, Yu, Wang, Xu, Liang, Zhang (bib0095) 2020; 7
Benefits of Nanotechnology for Cancer -, National Cancer Institute, 2017.
Gomer, Dougherty (bib0078) 1979; 39
Andre Nel (bib0002) 2017; 11
Alessandrino, Tirumani, Krajewski, Shinagare, Jagannathan, Ramaiya, Di Salvo (bib0008) 2017; 72
Wu, Yang, Li, Dong, Liu, Zhang (bib0111) 2021; 65
Peng, Warloe, Berg, Moan, Kongshaug, Giercksky, Nesland (bib0028) 1997; 79
Jahan, Karim, Chowdhury (bib0057) 2021; 9
Hak, Ravasaheb Shinde, Rengan (bib0114) 2021; 33
Sun, Chen, Wang, Ji, Peng, Jin, Wu (bib0116) 2019; 9
(2019).
Mross, Kratz (bib0006) 2022
Huggett, Jermyn, Gillams, Illing, Mosse, Novelli, Kent, Bown, Hasan, Pogue, Pereira (bib0026) 2014; 110
Thundimadathil (bib0010) 2012; 2012
Li, Zheng, Yuan, Chen, Huang (bib0035) 2017; 1
Chen, Gao, Deng, Jin, Ji, Ding (bib0017) 2020; 14
Schmidt, Wagner, Oehr, Krebs (bib0033) 1992; 114
Davis, (Georgia) Chen, Shin (bib0048) 2008; 7
Liang (bib0098) 2020; 31
Chen, Jaskula-Sztul, Esquibel, Lou, Zheng, Dammalapati, Harrison, Eliceiri, Tang, Chen, Gong (bib0063) 2017; 27
Kang, Rho, Stiles, Hu, Baek, Hwang, Kashiwagi, Kim, Choi (bib0050) 2019
Wang, Zheng (bib0108) 2019; 20
Shun-Ichiro, Yuichiro, Kenji, Toshiaki, Ichiro (bib0013) 2012; 12
Farnsworth, Achen, Stacker (bib0068) 2018; 53
Gupta (bib0047) 2016; 8
Bae, Park (bib0075) 2011; 153
Jori (bib0080) 1987; 30
Maeda (bib0103) 2015; 91
Park, Cho, Han, Shin, Na, Lee, Kim (bib0092) 2017; 6
Son, Yi, Kwak, Yang, Park, Lee, Choi, Koo (bib0079) 2019; 17
Chen, Xu, Liang, Wang, Peng, Liu (bib0115) 2016; 7
Kano, Taniwaki, Nakamura, Shimada, Moriyama, Maruyama (bib0089) 2013; 167
Byrne (10.1016/j.pdpdt.2022.102915_bib0037) 2008; 60
Jasinski (10.1016/j.pdpdt.2022.102915_bib0051) 2018; 26
Behera (10.1016/j.pdpdt.2022.102915_bib0016) 2020; 18
Allison (10.1016/j.pdpdt.2022.102915_bib0086) 2004; 1
Ujiie (10.1016/j.pdpdt.2022.102915_bib0023) 2019; 107
Reddi (10.1016/j.pdpdt.2022.102915_bib0077) 1990; 61
Yeh (10.1016/j.pdpdt.2022.102915_bib0001) 2015; 75
Cheung (10.1016/j.pdpdt.2022.102915_bib0014) 2020; 4
Davis (10.1016/j.pdpdt.2022.102915_bib0048) 2008; 7
Da Silva (10.1016/j.pdpdt.2022.102915_bib0036) 2016; 83
Roh (10.1016/j.pdpdt.2022.102915_bib0012) 2017; 16
Gomer (10.1016/j.pdpdt.2022.102915_bib0025) 1991; 54
Wei (10.1016/j.pdpdt.2022.102915_bib0060) 2014; 19
Chandel (10.1016/j.pdpdt.2022.102915_bib0106) 2019; 9
Kang (10.1016/j.pdpdt.2022.102915_bib0050) 2019
Luiza Andreazza (10.1016/j.pdpdt.2022.102915_bib0020) 2016; 510
Zhang (10.1016/j.pdpdt.2022.102915_bib0100) 2020; 11
Zheng (10.1016/j.pdpdt.2022.102915_bib0022) 2002; 13
Bazak (10.1016/j.pdpdt.2022.102915_bib0038) 2015; 141
Allison (10.1016/j.pdpdt.2022.102915_bib0088) 2008; 5
Kano (10.1016/j.pdpdt.2022.102915_bib0089) 2013; 167
Zhen (10.1016/j.pdpdt.2022.102915_bib0044) 2014; 8
May (10.1016/j.pdpdt.2022.102915_bib0009) 2018; 33
Natfji (10.1016/j.pdpdt.2022.102915_bib0041) 2017; 106
Liu (10.1016/j.pdpdt.2022.102915_bib0101) 2020; 321
Mross (10.1016/j.pdpdt.2022.102915_bib0006) 2022
Zhang (10.1016/j.pdpdt.2022.102915_bib0040) 2019; 11
Allison (10.1016/j.pdpdt.2022.102915_bib0029) 2010; 7
Bae (10.1016/j.pdpdt.2022.102915_bib0075) 2011; 153
Li (10.1016/j.pdpdt.2022.102915_bib0035) 2017; 1
Zou (10.1016/j.pdpdt.2022.102915_bib0113) 2016; 6
Bazak (10.1016/j.pdpdt.2022.102915_bib0019) 2014; 2
Zhao (10.1016/j.pdpdt.2022.102915_bib0117) 2020; 12
Huggett (10.1016/j.pdpdt.2022.102915_bib0026) 2014; 110
Wang (10.1016/j.pdpdt.2022.102915_bib0011) 2021; 13
Deshpande (10.1016/j.pdpdt.2022.102915_bib0055) 2020; 4
Siemann (10.1016/j.pdpdt.2022.102915_bib0070) 2015; 153
Schmidt (10.1016/j.pdpdt.2022.102915_bib0033) 1992; 114
Gupta (10.1016/j.pdpdt.2022.102915_bib0047) 2016; 8
Sun (10.1016/j.pdpdt.2022.102915_bib0094) 2019; 92
Maeda (10.1016/j.pdpdt.2022.102915_bib0053) 2012; 88
Kato (10.1016/j.pdpdt.2022.102915_bib0034) 2018; 53
Hernot (10.1016/j.pdpdt.2022.102915_bib0109) 2008; 60
Liu (10.1016/j.pdpdt.2022.102915_bib0076) 2017; 7
Yang (10.1016/j.pdpdt.2022.102915_bib0095) 2020; 7
Lukianova-Hleb (10.1016/j.pdpdt.2022.102915_bib0005) 2012; 24
Islam (10.1016/j.pdpdt.2022.102915_bib0065) 2021
Kumar (10.1016/j.pdpdt.2022.102915_bib0104) 2020; 479
Son (10.1016/j.pdpdt.2022.102915_bib0079) 2019; 17
Rajabi (10.1016/j.pdpdt.2022.102915_bib0066) 2017; 5
Chen (10.1016/j.pdpdt.2022.102915_bib0063) 2017; 27
Liang (10.1016/j.pdpdt.2022.102915_bib0112) 2018; 10
Manzoor (10.1016/j.pdpdt.2022.102915_bib0042) 2012; 72
Foley (10.1016/j.pdpdt.2022.102915_bib0032) 2003; 14
Shun-Ichiro (10.1016/j.pdpdt.2022.102915_bib0013) 2012; 12
Fisher (10.1016/j.pdpdt.2022.102915_bib0090) 2019; 8
Deepagan (10.1016/j.pdpdt.2022.102915_bib0107) 2018; 18
Karagiannis (10.1016/j.pdpdt.2022.102915_bib0007) 2017; 9
Alessandrino (10.1016/j.pdpdt.2022.102915_bib0008) 2017; 72
Gullotti (10.1016/j.pdpdt.2022.102915_bib0039) 2009; 6
Duan (10.1016/j.pdpdt.2022.102915_bib0110) 2020; 10
Kessel (10.1016/j.pdpdt.2022.102915_bib0081) 1993; 25
Matsumura (10.1016/j.pdpdt.2022.102915_bib0004) 1986; 46
Emami Nejad (10.1016/j.pdpdt.2022.102915_bib0054) 2021; 21
Zhang (10.1016/j.pdpdt.2022.102915_bib0118) 2018; 5
Saboktakin (10.1016/j.pdpdt.2022.102915_bib0084) 2014; 65
Pegaz (10.1016/j.pdpdt.2022.102915_bib0083) 2005; 81
Zhen (10.1016/j.pdpdt.2022.102915_bib0099) 2019; 218
Luo (10.1016/j.pdpdt.2022.102915_bib0096) 2020; 14
Dewhirst (10.1016/j.pdpdt.2022.102915_bib0045) 2017; 17
Chen (10.1016/j.pdpdt.2022.102915_bib0115) 2016; 7
Cai (10.1016/j.pdpdt.2022.102915_bib0072) 2020; 12
Gomer (10.1016/j.pdpdt.2022.102915_bib0078) 1979; 39
Farnsworth (10.1016/j.pdpdt.2022.102915_bib0068) 2018; 53
Rengan (10.1016/j.pdpdt.2022.102915_bib0073) 2015; 15
Jahan (10.1016/j.pdpdt.2022.102915_bib0057) 2021; 9
Dozono (10.1016/j.pdpdt.2022.102915_bib0058) 2016; 11
Ngoune (10.1016/j.pdpdt.2022.102915_bib0071) 2016; 238
Wilczewska (10.1016/j.pdpdt.2022.102915_bib0015) 2012; 64
Hak (10.1016/j.pdpdt.2022.102915_bib0114) 2021; 33
Huang (10.1016/j.pdpdt.2022.102915_bib0052) 2012; 6
Peng (10.1016/j.pdpdt.2022.102915_bib0028) 1997; 79
Maeda (10.1016/j.pdpdt.2022.102915_bib0103) 2015; 91
Fang (10.1016/j.pdpdt.2022.102915_bib0064) 2020; 157
Clemons (10.1016/j.pdpdt.2022.102915_bib0018) 2018; 34
Hoya (10.1016/j.pdpdt.2022.102915_bib0105) 2001; 8
10.1016/j.pdpdt.2022.102915_bib0062
10.1016/j.pdpdt.2022.102915_bib0061
Baron (10.1016/j.pdpdt.2022.102915_bib0030) 2010; 42
Chauhan (10.1016/j.pdpdt.2022.102915_bib0093) 2018; 8
Fang (10.1016/j.pdpdt.2022.102915_bib0067) 2011; 63
Master (10.1016/j.pdpdt.2022.102915_bib0082) 2012; 8
Thundimadathil (10.1016/j.pdpdt.2022.102915_bib0010) 2012; 2012
Muragaki (10.1016/j.pdpdt.2022.102915_bib0031) 2013; 119
Andre Nel (10.1016/j.pdpdt.2022.102915_bib0002) 2017; 11
Park (10.1016/j.pdpdt.2022.102915_bib0092) 2017; 6
Wang (10.1016/j.pdpdt.2022.102915_bib0108) 2019; 20
Düzgüneş (10.1016/j.pdpdt.2022.102915_bib0091) 2018; 9
Goos (10.1016/j.pdpdt.2022.102915_bib0043) 2020; 10
Noweski (10.1016/j.pdpdt.2022.102915_bib0085) 2019; 5
Sun (10.1016/j.pdpdt.2022.102915_bib0116) 2019; 9
Wu (10.1016/j.pdpdt.2022.102915_bib0111) 2021; 65
Cabral (10.1016/j.pdpdt.2022.102915_bib0049) 2015; 9
Wang (10.1016/j.pdpdt.2022.102915_bib0102) 2020; 8
Miller (10.1016/j.pdpdt.2022.102915_bib0027) 2007; 224
Tang (10.1016/j.pdpdt.2022.102915_bib0046) 2012; 6
Liang (10.1016/j.pdpdt.2022.102915_bib0098) 2020; 31
Hu (10.1016/j.pdpdt.2022.102915_bib0087) 2005; 81
Chen (10.1016/j.pdpdt.2022.102915_bib0017) 2020; 14
Ahmadiankia (10.1016/j.pdpdt.2022.102915_bib0056) 2019; 8
Kwiatkowski (10.1016/j.pdpdt.2022.102915_bib0021) 2018; 106
Fu (10.1016/j.pdpdt.2022.102915_bib0097) 2020; 18
Lim (10.1016/j.pdpdt.2022.102915_bib0069) 2019; 12
Jori (10.1016/j.pdpdt.2022.102915_bib0080) 1987; 30
Li (10.1016/j.pdpdt.2022.102915_bib0024) 2003; 23
Wang (10.1016/j.pdpdt.2022.102915_bib0074) 2019; 197
Kroon (10.1016/j.pdpdt.2022.102915_bib0059) 2014; 40
Rosenblum (10.1016/j.pdpdt.2022.102915_bib0003) 2018; 9
References_xml – volume: 8
  start-page: 6004
  year: 2014
  end-page: 6013
  ident: bib0044
  article-title: Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles
  publication-title: ACS Nano
– volume: 60
  start-page: 1153
  year: 2008
  end-page: 1166
  ident: bib0109
  article-title: Microbubbles in ultrasound-triggered drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 13
  start-page: 2992
  year: 2021
  ident: bib0011
  article-title: Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers
  publication-title: Cancers
– volume: 25
  start-page: 1377
  year: 1993
  end-page: 1383
  ident: bib0081
  article-title: Biodistribution of photosensitizing agents
  publication-title: Int. J. Biochem.
– volume: 65
  year: 2021
  ident: bib0111
  article-title: Nanobubbles for tumors: imaging and drug carriers
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 106
  start-page: 3179
  year: 2017
  end-page: 3187
  ident: bib0041
  article-title: Parameters affecting the enhanced permeability and retention effect: the need for patient selection
  publication-title: J. Pharm. Sci.
– volume: 39
  start-page: 146
  year: 1979
  end-page: 151
  ident: bib0078
  article-title: Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue
  publication-title: Cancer Res.
– volume: 1
  start-page: 27
  year: 2004
  end-page: 42
  ident: bib0086
  article-title: Photosensitizers in clinical PDT
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 18
  start-page: 2637
  year: 2018
  end-page: 2644
  ident: bib0107
  article-title: Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime
  publication-title: Nano Lett.
– volume: 197
  start-page: 284
  year: 2019
  end-page: 293
  ident: bib0074
  article-title: A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy
  publication-title: Biomaterials
– volume: 15
  start-page: 842
  year: 2015
  end-page: 848
  ident: bib0073
  article-title: analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer
  publication-title: Nano Lett.
– volume: 7
  start-page: 61
  year: 2010
  end-page: 75
  ident: bib0029
  article-title: Oncologic photodynamic therapy photosensitizers: a clinical review
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 13
  start-page: 392
  year: 2002
  end-page: 396
  ident: bib0022
  article-title: Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer
  publication-title: Bioconjugate Chem.
– volume: 107
  start-page: 369
  year: 2019
  end-page: 377
  ident: bib0023
  article-title: Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy
  publication-title: Ann. Thorac. Surg.
– volume: 23
  start-page: 1341
  year: 2003
  end-page: 1343
  ident: bib0024
  article-title: Clinical study of photofrin photodynamic therapy for advanced cancers
  publication-title: Di Yi Jun Yi Da Xue Xue Bao
– volume: 65
  start-page: 398
  year: 2014
  end-page: 414
  ident: bib0084
  article-title: The novel polymeric systems for photodynamic therapy technique
  publication-title: Int. J. Biol. Macromol.
– volume: 321
  start-page: 589
  year: 2020
  end-page: 601
  ident: bib0101
  article-title: Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer
  publication-title: J. Controll. Release
– volume: 81
  start-page: 1505
  year: 2005
  end-page: 1510
  ident: bib0083
  article-title: Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels
  publication-title: Photochem. Photobiol.
– start-page: 1
  year: 2021
  end-page: 14
  ident: bib0065
  article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors
  publication-title: Expert Opin. Drug Deliv.
– volume: 7
  start-page: 771
  year: 2008
  end-page: 782
  ident: bib0048
  article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer
  publication-title: Nat. Rev. Drug Discov.
– volume: 6
  start-page: 1041
  year: 2009
  end-page: 1051
  ident: bib0039
  article-title: Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery
  publication-title: Mol. Pharm.
– volume: 64
  start-page: 1020
  year: 2012
  end-page: 1037
  ident: bib0015
  article-title: Nanoparticles as a drug delivery systems
  publication-title: Pharmacol. Rep.
– volume: 119
  start-page: 845
  year: 2013
  end-page: 852
  ident: bib0031
  article-title: Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors
  publication-title: J. Neurosurg.
– volume: 34
  start-page: 15343
  year: 2018
  end-page: 15349
  ident: bib0018
  article-title: Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy
  publication-title: Langmuir
– volume: 6
  start-page: 762
  year: 2016
  end-page: 772
  ident: bib0113
  article-title: Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics
  publication-title: Theranostics
– volume: 54
  start-page: 1093
  year: 1991
  end-page: 1107
  ident: bib0025
  article-title: Preclinical examination of first and second generation photosensitizers used in photodynamic therapy
  publication-title: Photochem. Photobiol.
– volume: 53
  start-page: 64
  year: 2018
  end-page: 73
  ident: bib0068
  article-title: The evolving role of lymphatics in cancer metastasis
  publication-title: Curr. Opin. Immunol.
– volume: 17
  start-page: 738
  year: 2017
  end-page: 750
  ident: bib0045
  article-title: Transport of drugs from blood vessels to tumour tissue
  publication-title: Nat. Rev. Cancer
– volume: 9
  start-page: 114
  year: 2021
  ident: bib0057
  article-title: Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics
  publication-title: Biomedicines
– volume: 72
  start-page: 5566
  year: 2012
  end-page: 5575
  ident: bib0042
  article-title: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors
  publication-title: Cancer Res.
– volume: 106
  start-page: 1098
  year: 2018
  end-page: 1107
  ident: bib0021
  article-title: Photodynamic therapy – mechanisms, photosensitizers and combinations
  publication-title: Biomed. Pharmacother.
– volume: 8
  start-page: 2214
  year: 2019
  ident: bib0090
  article-title: Liposomal lapatinib in combination with low-dose photodynamic therapy for the treatment of glioma
  publication-title: J. Clin. Med.
– volume: 7
  start-page: 13193
  year: 2016
  ident: bib0115
  article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat. Commun.
– volume: 14
  start-page: 5121
  year: 2020
  end-page: 5134
  ident: bib0017
  article-title: Supramolecular aggregation-induced emission nanodots with programmed tumor microenvironment responsiveness for image-guided orthotopic pancreatic cancer therapy
  publication-title: ACS Nano
– volume: 218
  year: 2019
  ident: bib0099
  article-title: Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer
  publication-title: Biomaterials
– volume: 63
  start-page: 136
  year: 2011
  end-page: 151
  ident: bib0067
  article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv. Drug Deliv. Rev.
– volume: 153
  start-page: 107
  year: 2015
  end-page: 124
  ident: bib0070
  article-title: Modulation of the tumor vasculature and oxygenation to improve therapy
  publication-title: Pharmacol. Ther.
– volume: 83
  start-page: 308
  year: 2016
  end-page: 320
  ident: bib0036
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials
– volume: 81
  start-page: 1460
  year: 2005
  end-page: 1468
  ident: bib0087
  article-title: Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom
  publication-title: Photochem. Photobiol.
– volume: 224
  start-page: 290
  year: 2007
  end-page: 299
  ident: bib0027
  article-title: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 18
  start-page: 146
  year: 2020
  ident: bib0097
  article-title: The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer
  publication-title: J. Nanobiotechnol.
– volume: 114
  start-page: 307
  year: 1992
  end-page: 311
  ident: bib0033
  article-title: Clinical use of photodynamic therapy in gynecologic tumor patients–antibody-targeted photodynamic laser therapy as a new oncologic treatment procedure
  publication-title: Zentralbl. Gynakol.
– volume: 12
  start-page: 232
  year: 2020
  ident: bib0072
  article-title: Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer
  publication-title: Pharmaceutics
– volume: 9
  start-page: 1410
  year: 2018
  ident: bib0003
  article-title: Progress and challenges towards targeted delivery of cancer therapeutics
  publication-title: Nat. Commun.
– volume: 33
  start-page: 241
  year: 2018
  end-page: 251
  ident: bib0009
  article-title: Chemotherapy-induced genotoxic damage to bone marrow cells: long-term implications
  publication-title: Mutagenesis
– volume: 4
  start-page: 91
  year: 2020
  end-page: 106
  ident: bib0014
  article-title: Liposome-templated indocyanine green j- aggregates for
  publication-title: Nanotheranostics
– volume: 53
  start-page: 2034
  year: 2018
  end-page: 2046
  ident: bib0034
  article-title: Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma
  publication-title: Int. J. Oncol.
– volume: 10
  start-page: 462
  year: 2020
  end-page: 483
  ident: bib0110
  article-title: Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications
  publication-title: Theranostics
– volume: 157
  start-page: 142
  year: 2020
  end-page: 160
  ident: bib0064
  article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers
  publication-title: Adv. Drug Deliv. Rev.
– volume: 9
  start-page: 14769
  year: 2019
  ident: bib0106
  article-title: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis
  publication-title: Sci. Rep.
– volume: 9
  start-page: 6885
  year: 2019
  end-page: 6900
  ident: bib0116
  article-title: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery
  publication-title: Theranostics
– volume: 5
  start-page: 34
  year: 2017
  ident: bib0066
  article-title: The role of angiogenesis in cancer treatment
  publication-title: Biomedicines
– volume: 60
  start-page: 1615
  year: 2008
  end-page: 1626
  ident: bib0037
  article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics
  publication-title: Adv. Drug Deliv. Rev.
– volume: 75
  start-page: 5014
  year: 2015
  end-page: 5022
  ident: bib0001
  article-title: Mechanisms of cancer cell dormancy–another hallmark of cancer?
  publication-title: Cancer Res.
– volume: 72
  start-page: 521
  year: 2017
  end-page: 533
  ident: bib0008
  article-title: Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors
  publication-title: Clin. Radiol.
– volume: 61
  start-page: 407
  year: 1990
  end-page: 411
  ident: bib0077
  article-title: Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency
  publication-title: Br. J. Cancer
– volume: 8
  start-page: 655
  year: 2012
  end-page: 664
  ident: bib0082
  article-title: EGFR-mediated intracellular delivery of pc 4 nanoformulation for targeted photodynamic therapy of cancer:
  publication-title: Nanomedicine
– volume: 479
  start-page: 23
  year: 2020
  end-page: 30
  ident: bib0104
  article-title: Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities
  publication-title: Cancer Lett.
– volume: 14
  start-page: 15
  year: 2003
  end-page: 22
  ident: bib0032
  article-title: Clinical efficacy of methyl aminolevulinate (Metvix) photodynamic therapy
  publication-title: J. Dermatolog. Treat.
– volume: 153
  start-page: 198
  year: 2011
  end-page: 205
  ident: bib0075
  article-title: Targeted drug delivery to tumors: myths, reality and possibility
  publication-title: J. Control Release
– volume: 5
  year: 2018
  ident: bib0118
  article-title: Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single nir irradiation
  publication-title: Adv. Sci.
– volume: 30
  start-page: 375
  year: 1987
  end-page: 380
  ident: bib0080
  article-title: Photodynamic therapy of solid tumors
  publication-title: Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem.
– volume: 8
  start-page: 139
  year: 2019
  end-page: 146
  ident: bib0056
  article-title: Nutrient deprivation modulates the metastatic potential of breast cancer cells
  publication-title: Rep. Biochem. Mol. Biol.
– volume: 19
  start-page: 129
  year: 2014
  end-page: 136
  ident: bib0060
  article-title: Passive lung-targeted drug delivery systems via intravenous administration
  publication-title: Pharm. Dev. Technol.
– volume: 8
  start-page: 16673
  year: 2018
  ident: bib0093
  article-title: Enhanced EPR directed and imaging guided photothermal therapy using vitamin e modified toco-photoxil
  publication-title: Sci. Rep.
– volume: 12
  start-page: 134
  year: 2019
  ident: bib0069
  article-title: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy
  publication-title: J. Hematol. Oncol.
– volume: 5
  start-page: 1022
  year: 2019
  end-page: 1028
  ident: bib0085
  article-title: Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials)
  publication-title: Eur. Urol. Focus
– volume: 12
  start-page: e1583
  year: 2020
  ident: bib0117
  article-title: Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers
  publication-title: WIREs Nanomed. Nanobiotechnol.
– year: 2019
  ident: bib0050
  article-title: Size-dependent EPR effect of polymeric nanoparticles on tumor targeting
  publication-title: Advanced Healthcare Materials
– volume: 8
  start-page: 215
  year: 2001
  end-page: 222
  ident: bib0105
  article-title: A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding
  publication-title: Drug Deliv.
– volume: 31
  year: 2020
  ident: bib0098
  article-title: Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy
  publication-title: Nanotechnology
– volume: 12
  start-page: 176
  year: 2012
  end-page: 184
  ident: bib0013
  article-title: Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis
  publication-title: Curr. Top. Med. Chem.
– volume: 2012
  year: 2012
  ident: bib0010
  article-title: Cancer treatment using peptides: current therapies and future prospects
  publication-title: J. Amino Acids
– volume: 1
  start-page: 346
  year: 2017
  end-page: 357
  ident: bib0035
  article-title: Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials
  publication-title: Nanotheranostics
– volume: 11
  start-page: 9567
  year: 2017
  end-page: 9569
  ident: bib0002
  article-title: New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics
  publication-title: ACS Nano
– volume: 141
  start-page: 769
  year: 2015
  end-page: 784
  ident: bib0038
  article-title: Cancer active targeting by nanoparticles: a comprehensive review of literature
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 2
  start-page: 904
  year: 2014
  end-page: 908
  ident: bib0019
  article-title: Passive targeting of nanoparticles to cancer: a comprehensive review of the literature
  publication-title: Mol. Clin. Oncol.
– volume: 8
  start-page: 2876
  year: 2020
  end-page: 2886
  ident: bib0102
  article-title: An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 567
  year: 2020
  end-page: 584
  ident: bib0043
  article-title: Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect
  publication-title: Theranostics
– start-page: 1
  year: 2022
  end-page: 31
  ident: bib0006
  article-title: Limits of conventional cancer chemotherapy
  publication-title: Drug Delivery in Oncology
– volume: 11
  start-page: e1519
  year: 2019
  ident: bib0040
  article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design
  publication-title: WIREs Nanomed. Nanobiotechnol.
– volume: 14
  start-page: 15193
  year: 2020
  end-page: 15203
  ident: bib0096
  article-title: Nanoparticles yield increased drug uptake and therapeutic efficacy upon sequential near-infrared irradiation
  publication-title: ACS Nano
– volume: 33
  year: 2021
  ident: bib0114
  article-title: A review of advanced nanoformulations in phototherapy for cancer therapeutics
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 46
  start-page: 6387
  year: 1986
  end-page: 6392
  ident: bib0004
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs
  publication-title: Cancer Res
– volume: 510
  start-page: 240
  year: 2016
  end-page: 249
  ident: bib0020
  article-title: Berberine as a photosensitizing agent for antitumoral photodynamic therapy: insights into its association to low density lipoproteins
  publication-title: Int. J. Pharm.
– volume: 8
  start-page: 255
  year: 2016
  end-page: 270
  ident: bib0047
  article-title: Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature
  publication-title: WIREs Nanomed. Nanobiotechnol.
– volume: 6
  start-page: 3954
  year: 2012
  end-page: 3966
  ident: bib0046
  article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates
  publication-title: ACS Nano
– reference: Benefits of Nanotechnology for Cancer -, National Cancer Institute, 2017.
– volume: 11
  start-page: 101
  year: 2016
  end-page: 106
  ident: bib0058
  article-title: HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage iv prostate cancer and extensive lung and bone metastases
  publication-title: Target Oncol.
– volume: 27
  year: 2017
  ident: bib0063
  article-title: Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging
  publication-title: Adv. Funct. Mater.
– volume: 88
  start-page: 53
  year: 2012
  end-page: 71
  ident: bib0053
  article-title: Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
– volume: 6
  start-page: 79
  year: 2017
  end-page: 90
  ident: bib0092
  article-title: Advanced smart-photosensitizers for more effective cancer treatment
  publication-title: Biomater. Sci.
– volume: 92
  start-page: 219
  year: 2019
  end-page: 228
  ident: bib0094
  article-title: Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy
  publication-title: Acta Biomater.
– volume: 42
  start-page: 728
  year: 2010
  end-page: 735
  ident: bib0030
  article-title: Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial
  publication-title: Lasers Surg. Med.
– volume: 18
  start-page: 1557
  year: 2020
  end-page: 1567
  ident: bib0016
  article-title: Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review
  publication-title: Environ. Chem. Lett.
– reference: (2019).
– volume: 167
  start-page: 315
  year: 2013
  end-page: 321
  ident: bib0089
  article-title: Tumor delivery of photofrin® by PLL-g-PEG for photodynamic therapy
  publication-title: J. Control Release
– volume: 10
  start-page: 761
  year: 2018
  end-page: 774
  ident: bib0112
  article-title: Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy
  publication-title: NPG Asia Mater.
– volume: 11
  start-page: 427
  year: 2020
  end-page: 437
  ident: bib0100
  article-title: A promising anticancer drug: a photosensitizer based on the porphyrin skeleton
  publication-title: RSC Med. Chem.
– volume: 26
  start-page: 784
  year: 2018
  end-page: 792
  ident: bib0051
  article-title: The effect of size and shape of RNA nanoparticles on biodistribution
  publication-title: Molecular Therapy
– volume: 5
  start-page: 112
  year: 2008
  end-page: 119
  ident: bib0088
  article-title: Photofrin photodynamic therapy: 2.0mg/kg or not 2.0mg/kg that is the question
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 9
  start-page: 823
  year: 2018
  end-page: 832
  ident: bib0091
  article-title: Photodynamic therapy of cancer with liposomal photosensitizers
  publication-title: Ther. Deliv.
– volume: 9
  start-page: 4957
  year: 2015
  end-page: 4967
  ident: bib0049
  article-title: Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers
  publication-title: ACS Nano
– volume: 17
  start-page: 50
  year: 2019
  ident: bib0079
  article-title: Gelatin–chlorin e6 conjugate for
  publication-title: J. Nanobiotechnol.
– volume: 21
  start-page: 62
  year: 2021
  ident: bib0054
  article-title: The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment
  publication-title: Cancer Cell Int.
– volume: 7
  start-page: 16106
  year: 2017
  ident: bib0076
  article-title: A new approach to deliver anti-cancer nanodrugs with reduced off-target toxicities and improved efficiency by temporarily blunting the reticuloendothelial system with intralipid
  publication-title: Sci. Rep.
– volume: 4
  start-page: 156
  year: 2020
  end-page: 172
  ident: bib0055
  article-title: Supramolecular polysaccharide nanotheranostics that inhibit cancer cells growth and monitor targeted therapy response
  publication-title: Nanotheranostics
– volume: 6
  start-page: 4483
  year: 2012
  end-page: 4493
  ident: bib0052
  article-title: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells multicellular spheroids and tumors
  publication-title: ACS Nano
– volume: 24
  start-page: 3831
  year: 2012
  end-page: 3837
  ident: bib0005
  article-title: Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1487
  year: 2017
  end-page: 1496
  ident: bib0012
  article-title: Photodynamic therapy using photosensitizer-encapsulated polymeric nanoparticle to overcome ATP-binding cassette transporter subfamily g2 function in pancreatic cancer
  publication-title: Mol. Cancer Ther.
– volume: 7
  year: 2020
  ident: bib0095
  article-title: Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse
  publication-title: Adv. Sci.
– reference: Alexander V Kabanov, William C. Zamboni, Liposomal doxorubicin and pluronic combination for cancer therapy.
– reference: .
– volume: 110
  start-page: 1698
  year: 2014
  end-page: 1704
  ident: bib0026
  article-title: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer
  publication-title: Br. J. Cancer
– volume: 20
  start-page: 291
  year: 2019
  end-page: 299
  ident: bib0108
  article-title: Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy
  publication-title: J. Zhejiang Univ. Sci. B
– volume: 91
  start-page: 3
  year: 2015
  end-page: 6
  ident: bib0103
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv. Drug. Deliv. Rev.
– volume: 238
  start-page: 58
  year: 2016
  end-page: 70
  ident: bib0071
  article-title: Accumulating nanoparticles by EPR: a route of no return
  publication-title: J. Controll. Release
– volume: 79
  start-page: 2282
  year: 1997
  end-page: 2308
  ident: bib0028
  article-title: 5-Aminolevulinic acid-based photodynamic therapy
  publication-title: Clin. Res. Future Chall. Cancer
– volume: 9
  year: 2017
  ident: bib0007
  article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism
  publication-title: Sci. Transl. Med.
– volume: 40
  start-page: 578
  year: 2014
  end-page: 584
  ident: bib0059
  article-title: Liposomal nanomedicines in the treatment of prostate cancer
  publication-title: Cancer Treat. Rev.
– volume: 5
  start-page: 1022
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0085
  article-title: Medium-term follow-up of vascular-targeted photodynamic therapy of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials)
  publication-title: Eur. Urol. Focus
  doi: 10.1016/j.euf.2018.04.003
– volume: 79
  start-page: 2282
  year: 1997
  ident: 10.1016/j.pdpdt.2022.102915_bib0028
  article-title: 5-Aminolevulinic acid-based photodynamic therapy
  publication-title: Clin. Res. Future Chall. Cancer
– volume: 21
  start-page: 62
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0054
  article-title: The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-020-01719-5
– volume: 157
  start-page: 142
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0064
  article-title: Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.005
– volume: 5
  start-page: 112
  year: 2008
  ident: 10.1016/j.pdpdt.2022.102915_bib0088
  article-title: Photofrin photodynamic therapy: 2.0mg/kg or not 2.0mg/kg that is the question
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2008.05.004
– volume: 53
  start-page: 64
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0068
  article-title: The evolving role of lymphatics in cancer metastasis
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2018.04.008
– volume: 12
  start-page: 176
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0013
  article-title: Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802612799078883
– volume: 8
  start-page: 655
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0082
  article-title: EGFR-mediated intracellular delivery of pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2011.09.012
– start-page: 1
  year: 2022
  ident: 10.1016/j.pdpdt.2022.102915_bib0006
  article-title: Limits of conventional cancer chemotherapy
– volume: 18
  start-page: 1557
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0016
  article-title: Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01022-9
– volume: 27
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0063
  article-title: Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging
  publication-title: Adv. Funct. Mater.
– volume: 238
  start-page: 58
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0071
  article-title: Accumulating nanoparticles by EPR: a route of no return
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2016.07.028
– volume: 7
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0095
  article-title: Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001088
– volume: 8
  start-page: 255
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0047
  article-title: Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1362
– volume: 65
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0111
  article-title: Nanobubbles for tumors: imaging and drug carriers
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 18
  start-page: 2637
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0107
  article-title: Intracellularly activatable nanovasodilators to enhance passive cancer targeting regime
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00495
– volume: 12
  start-page: 232
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0072
  article-title: Metal organic frameworks as drug targeting delivery vehicles in the treatment of cancer
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12030232
– volume: 11
  start-page: e1519
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0040
  article-title: Strategies to improve tumor penetration of nanomedicines through nanoparticle design
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1519
– volume: 6
  start-page: 3954
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0046
  article-title: Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates
  publication-title: ACS Nano
  doi: 10.1021/nn300149c
– volume: 7
  start-page: 16106
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0076
  article-title: A new approach to deliver anti-cancer nanodrugs with reduced off-target toxicities and improved efficiency by temporarily blunting the reticuloendothelial system with intralipid
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16293-6
– volume: 10
  start-page: 462
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0110
  article-title: Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications
  publication-title: Theranostics
  doi: 10.7150/thno.37593
– volume: 9
  start-page: 1410
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0003
  article-title: Progress and challenges towards targeted delivery of cancer therapeutics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03705-y
– ident: 10.1016/j.pdpdt.2022.102915_bib0061
– volume: 40
  start-page: 578
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0059
  article-title: Liposomal nanomedicines in the treatment of prostate cancer
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2013.10.005
– volume: 81
  start-page: 1460
  year: 2005
  ident: 10.1016/j.pdpdt.2022.102915_bib0087
  article-title: Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom
  publication-title: Photochem. Photobiol.
  doi: 10.1562/2005-05-04-RA-513
– volume: 64
  start-page: 1020
  issue: 5
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0015
  article-title: Nanoparticles as a drug delivery systems
  publication-title: Pharmacol. Rep.
  doi: 10.1016/S1734-1140(12)70901-5
– volume: 13
  start-page: 392
  year: 2002
  ident: 10.1016/j.pdpdt.2022.102915_bib0022
  article-title: Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc025516h
– volume: 9
  start-page: 4957
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0049
  article-title: Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers
  publication-title: ACS Nano
  doi: 10.1021/nn5070259
– volume: 20
  start-page: 291
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0108
  article-title: Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1800508
– volume: 16
  start-page: 1487
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0012
  article-title: Photodynamic therapy using photosensitizer-encapsulated polymeric nanoparticle to overcome ATP-binding cassette transporter subfamily g2 function in pancreatic cancer
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-16-0642
– volume: 107
  start-page: 369
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0023
  article-title: Porphyrin–high-density lipoprotein: a novel photosensitizing nanoparticle for lung cancer therapy
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2018.08.053
– start-page: 1
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0065
  article-title: Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors
  publication-title: Expert Opin. Drug Deliv.
– volume: 65
  start-page: 398
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0084
  article-title: The novel polymeric systems for photodynamic therapy technique
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.01.019
– volume: 17
  start-page: 50
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0079
  article-title: Gelatin–chlorin e6 conjugate for in vivo photodynamic therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0475-1
– volume: 60
  start-page: 1615
  year: 2008
  ident: 10.1016/j.pdpdt.2022.102915_bib0037
  article-title: Active targeting schemes for nanoparticle systems in cancer therapeutics
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.08.005
– volume: 12
  start-page: 134
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0069
  article-title: Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0818-2
– volume: 8
  start-page: 2214
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0090
  article-title: Liposomal lapatinib in combination with low-dose photodynamic therapy for the treatment of glioma
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm8122214
– volume: 6
  start-page: 4483
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0052
  article-title: Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells multicellular spheroids and tumors in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn301282m
– volume: 46
  start-page: 6387
  issue: 12–Part 1
  year: 1986
  ident: 10.1016/j.pdpdt.2022.102915_bib0004
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs
  publication-title: Cancer Res
– volume: 106
  start-page: 1098
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0021
  article-title: Photodynamic therapy – mechanisms, photosensitizers and combinations
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.07.049
– volume: 83
  start-page: 308
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0036
  article-title: Combinatorial prospects of nano-targeted chemoimmunotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.006
– volume: 26
  start-page: 784
  issue: 3
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0051
  article-title: The effect of size and shape of RNA nanoparticles on biodistribution
  publication-title: Molecular Therapy
  doi: 10.1016/j.ymthe.2017.12.018
– volume: 9
  start-page: 6885
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0116
  article-title: Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery
  publication-title: Theranostics
  doi: 10.7150/thno.36510
– volume: 19
  start-page: 129
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0060
  article-title: Passive lung-targeted drug delivery systems via intravenous administration
  publication-title: Pharm. Dev. Technol.
  doi: 10.3109/10837450.2012.757782
– volume: 153
  start-page: 198
  year: 2011
  ident: 10.1016/j.pdpdt.2022.102915_bib0075
  article-title: Targeted drug delivery to tumors: myths, reality and possibility
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2011.06.001
– volume: 31
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0098
  article-title: Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab6fd5
– volume: 8
  start-page: 16673
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0093
  article-title: Enhanced EPR directed and imaging guided photothermal therapy using vitamin e modified toco-photoxil
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34898-3
– volume: 7
  start-page: 771
  year: 2008
  ident: 10.1016/j.pdpdt.2022.102915_bib0048
  article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2614
– volume: 25
  start-page: 1377
  year: 1993
  ident: 10.1016/j.pdpdt.2022.102915_bib0081
  article-title: Biodistribution of photosensitizing agents
  publication-title: Int. J. Biochem.
  doi: 10.1016/0020-711X(93)90685-8
– volume: 13
  start-page: 2992
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0011
  article-title: Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers
  publication-title: Cancers
  doi: 10.3390/cancers13122992
– volume: 24
  start-page: 3831
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0005
  article-title: Plasmonic nanobubbles enhance efficacy and selectivity of chemotherapy against drug-resistant cancer cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103550
– volume: 8
  start-page: 2876
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0102
  article-title: An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00235F
– volume: 6
  start-page: 1041
  year: 2009
  ident: 10.1016/j.pdpdt.2022.102915_bib0039
  article-title: Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery
  publication-title: Mol. Pharm.
  doi: 10.1021/mp900090z
– volume: 14
  start-page: 5121
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0017
  article-title: Supramolecular aggregation-induced emission nanodots with programmed tumor microenvironment responsiveness for image-guided orthotopic pancreatic cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c02197
– volume: 75
  start-page: 5014
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0001
  article-title: Mechanisms of cancer cell dormancy–another hallmark of cancer?
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1370
– volume: 33
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0114
  article-title: A review of advanced nanoformulations in phototherapy for cancer therapeutics
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2021.102205
– volume: 39
  start-page: 146
  year: 1979
  ident: 10.1016/j.pdpdt.2022.102915_bib0078
  article-title: Determination of [3H]- and [14C]hematoporphyrin derivative distribution in malignant and normal tissue
  publication-title: Cancer Res.
– volume: 6
  start-page: 79
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0092
  article-title: Advanced smart-photosensitizers for more effective cancer treatment
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00872D
– volume: 34
  start-page: 15343
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0018
  article-title: Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02946
– volume: 23
  start-page: 1341
  year: 2003
  ident: 10.1016/j.pdpdt.2022.102915_bib0024
  article-title: Clinical study of photofrin photodynamic therapy for advanced cancers
  publication-title: Di Yi Jun Yi Da Xue Xue Bao
– volume: 72
  start-page: 5566
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0042
  article-title: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-1683
– volume: 88
  start-page: 53
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0053
  article-title: Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.88.53
– volume: 2
  start-page: 904
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0019
  article-title: Passive targeting of nanoparticles to cancer: a comprehensive review of the literature
  publication-title: Mol. Clin. Oncol.
  doi: 10.3892/mco.2014.356
– volume: 63
  start-page: 136
  year: 2011
  ident: 10.1016/j.pdpdt.2022.102915_bib0067
  article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.04.009
– volume: 218
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0099
  article-title: Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119330
– volume: 114
  start-page: 307
  year: 1992
  ident: 10.1016/j.pdpdt.2022.102915_bib0033
  article-title: Clinical use of photodynamic therapy in gynecologic tumor patients–antibody-targeted photodynamic laser therapy as a new oncologic treatment procedure
  publication-title: Zentralbl. Gynakol.
– volume: 10
  start-page: 761
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0112
  article-title: Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0066-x
– volume: 42
  start-page: 728
  year: 2010
  ident: 10.1016/j.pdpdt.2022.102915_bib0030
  article-title: Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial
  publication-title: Lasers Surg. Med.
  doi: 10.1002/lsm.20984
– volume: 11
  start-page: 9567
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0002
  article-title: New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07214
– volume: 106
  start-page: 3179
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0041
  article-title: Parameters affecting the enhanced permeability and retention effect: the need for patient selection
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2017.06.019
– volume: 7
  start-page: 13193
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0115
  article-title: Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13193
– volume: 8
  start-page: 6004
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0044
  article-title: Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn501134q
– volume: 167
  start-page: 315
  year: 2013
  ident: 10.1016/j.pdpdt.2022.102915_bib0089
  article-title: Tumor delivery of photofrin® by PLL-g-PEG for photodynamic therapy
  publication-title: J. Control Release
  doi: 10.1016/j.jconrel.2013.02.016
– volume: 321
  start-page: 589
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0101
  article-title: Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2020.02.043
– volume: 479
  start-page: 23
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0104
  article-title: Hypoxia in tumor microenvironment regulates exosome biogenesis: molecular mechanisms and translational opportunities
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2020.03.017
– volume: 72
  start-page: 521
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0008
  article-title: Imaging of hepatic toxicity of systemic therapy in a tertiary cancer centre: chemotherapy, haematopoietic stem cell transplantation, molecular targeted therapies, and immune checkpoint inhibitors
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2017.04.003
– volume: 4
  start-page: 156
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0055
  article-title: Supramolecular polysaccharide nanotheranostics that inhibit cancer cells growth and monitor targeted therapy response
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.44703
– volume: 12
  start-page: e1583
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0117
  article-title: Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1583
– year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0050
  article-title: Size-dependent EPR effect of polymeric nanoparticles on tumor targeting
– volume: 9
  start-page: 823
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0091
  article-title: Photodynamic therapy of cancer with liposomal photosensitizers
  publication-title: Ther. Deliv.
  doi: 10.4155/tde-2018-0050
– volume: 11
  start-page: 101
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0058
  article-title: HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage iv prostate cancer and extensive lung and bone metastases
  publication-title: Target Oncol.
  doi: 10.1007/s11523-015-0379-4
– volume: 33
  start-page: 241
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0009
  article-title: Chemotherapy-induced genotoxic damage to bone marrow cells: long-term implications
  publication-title: Mutagenesis
  doi: 10.1093/mutage/gey014
– volume: 14
  start-page: 15193
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0096
  article-title: Nanoparticles yield increased drug uptake and therapeutic efficacy upon sequential near-infrared irradiation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05425
– volume: 2012
  year: 2012
  ident: 10.1016/j.pdpdt.2022.102915_bib0010
  article-title: Cancer treatment using peptides: current therapies and future prospects
  publication-title: J. Amino Acids
  doi: 10.1155/2012/967347
– volume: 4
  start-page: 91
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0014
  article-title: Liposome-templated indocyanine green j- aggregates for in vivo near infrared imaging and stable photothermal heating
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.41737
– volume: 15
  start-page: 842
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0073
  article-title: In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer
  publication-title: Nano Lett.
  doi: 10.1021/nl5045378
– volume: 5
  start-page: 34
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0066
  article-title: The role of angiogenesis in cancer treatment
  publication-title: Biomedicines
  doi: 10.3390/biomedicines5020034
– volume: 141
  start-page: 769
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0038
  article-title: Cancer active targeting by nanoparticles: a comprehensive review of literature
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-014-1767-3
– volume: 153
  start-page: 107
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0070
  article-title: Modulation of the tumor vasculature and oxygenation to improve therapy
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2015.06.006
– volume: 9
  start-page: 14769
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0106
  article-title: Isolation, characterization and identification of antigenotoxic and anticancerous indigenous probiotics and their prophylactic potential in experimental colon carcinogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51361-z
– volume: 30
  start-page: 375
  year: 1987
  ident: 10.1016/j.pdpdt.2022.102915_bib0080
  article-title: Photodynamic therapy of solid tumors
  publication-title: Int. J. Radiat. Appl. Instrum. Part C Radiat. Phys. Chem.
– volume: 9
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0007
  article-title: Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan0026
– volume: 17
  start-page: 738
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0045
  article-title: Transport of drugs from blood vessels to tumour tissue
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.93
– ident: 10.1016/j.pdpdt.2022.102915_bib0062
– volume: 510
  start-page: 240
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0020
  article-title: Berberine as a photosensitizing agent for antitumoral photodynamic therapy: insights into its association to low density lipoproteins
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.06.009
– volume: 8
  start-page: 215
  year: 2001
  ident: 10.1016/j.pdpdt.2022.102915_bib0105
  article-title: A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding
  publication-title: Drug Deliv.
  doi: 10.1080/107175401317245895
– volume: 53
  start-page: 2034
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0034
  article-title: Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma
  publication-title: Int. J. Oncol.
– volume: 92
  start-page: 219
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0094
  article-title: Photodynamic PEG-coated ROS-sensitive prodrug nanoassemblies for core-shell synergistic chemo-photodynamic therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.05.008
– volume: 14
  start-page: 15
  issue: 3
  year: 2003
  ident: 10.1016/j.pdpdt.2022.102915_bib0032
  article-title: Clinical efficacy of methyl aminolevulinate (Metvix) photodynamic therapy
  publication-title: J. Dermatolog. Treat.
  doi: 10.1080/jdt.14.s3.15.22
– volume: 81
  start-page: 1505
  year: 2005
  ident: 10.1016/j.pdpdt.2022.102915_bib0083
  article-title: Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels
  publication-title: Photochem. Photobiol.
  doi: 10.1562/2005-02-23-RA-448
– volume: 18
  start-page: 146
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0097
  article-title: The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-020-00697-0
– volume: 54
  start-page: 1093
  year: 1991
  ident: 10.1016/j.pdpdt.2022.102915_bib0025
  article-title: Preclinical examination of first and second generation photosensitizers used in photodynamic therapy
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1991.tb02133.x
– volume: 224
  start-page: 290
  year: 2007
  ident: 10.1016/j.pdpdt.2022.102915_bib0027
  article-title: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2007.01.025
– volume: 119
  start-page: 845
  year: 2013
  ident: 10.1016/j.pdpdt.2022.102915_bib0031
  article-title: Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors
  publication-title: J. Neurosurg.
  doi: 10.3171/2013.7.JNS13415
– volume: 7
  start-page: 61
  year: 2010
  ident: 10.1016/j.pdpdt.2022.102915_bib0029
  article-title: Oncologic photodynamic therapy photosensitizers: a clinical review
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/j.pdpdt.2010.02.001
– volume: 1
  start-page: 346
  year: 2017
  ident: 10.1016/j.pdpdt.2022.102915_bib0035
  article-title: Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.19380
– volume: 60
  start-page: 1153
  year: 2008
  ident: 10.1016/j.pdpdt.2022.102915_bib0109
  article-title: Microbubbles in ultrasound-triggered drug and gene delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.03.005
– volume: 6
  start-page: 762
  year: 2016
  ident: 10.1016/j.pdpdt.2022.102915_bib0113
  article-title: Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics
  publication-title: Theranostics
  doi: 10.7150/thno.14988
– volume: 9
  start-page: 114
  year: 2021
  ident: 10.1016/j.pdpdt.2022.102915_bib0057
  article-title: Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9020114
– volume: 197
  start-page: 284
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0074
  article-title: A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.01.025
– volume: 10
  start-page: 567
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0043
  article-title: Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect
  publication-title: Theranostics
  doi: 10.7150/thno.36777
– volume: 61
  start-page: 407
  year: 1990
  ident: 10.1016/j.pdpdt.2022.102915_bib0077
  article-title: Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1990.89
– volume: 1
  start-page: 27
  year: 2004
  ident: 10.1016/j.pdpdt.2022.102915_bib0086
  article-title: Photosensitizers in clinical PDT
  publication-title: Photodiagnosis Photodyn. Ther.
  doi: 10.1016/S1572-1000(04)00007-9
– volume: 5
  year: 2018
  ident: 10.1016/j.pdpdt.2022.102915_bib0118
  article-title: Mitochondria-targeted artificial “nano-rbcs” for amplified synergistic cancer phototherapy by a single nir irradiation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201870050
– volume: 110
  start-page: 1698
  year: 2014
  ident: 10.1016/j.pdpdt.2022.102915_bib0026
  article-title: Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2014.95
– volume: 91
  start-page: 3
  year: 2015
  ident: 10.1016/j.pdpdt.2022.102915_bib0103
  article-title: Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity
  publication-title: Adv. Drug. Deliv. Rev.
  doi: 10.1016/j.addr.2015.01.002
– volume: 8
  start-page: 139
  year: 2019
  ident: 10.1016/j.pdpdt.2022.102915_bib0056
  article-title: Nutrient deprivation modulates the metastatic potential of breast cancer cells
  publication-title: Rep. Biochem. Mol. Biol.
– volume: 11
  start-page: 427
  year: 2020
  ident: 10.1016/j.pdpdt.2022.102915_bib0100
  article-title: A promising anticancer drug: a photosensitizer based on the porphyrin skeleton
  publication-title: RSC Med. Chem.
  doi: 10.1039/C9MD00558G
SSID ssj0034904
Score 2.5890608
SecondaryResourceType review_article
Snippet •This paper discusses in detail the prospective ways to use various existing treatment modalities to enhance the EPR effect.•The article also focuses on the...
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102915
SubjectTerms EPR
Extravasation
Microbubble
Microenvironment
Nanoparticles
PDT
Pharmacokinetics
Photodynamic Therapy
PTT
Ultrasound
Title Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1572100022002010
https://dx.doi.org/10.1016/j.pdpdt.2022.102915
https://www.ncbi.nlm.nih.gov/pubmed/35597441
https://www.proquest.com/docview/2667784018
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: ACRLP
  dateStart: 20040501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: AIKHN
  dateStart: 20040501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: .~1
  dateStart: 20040501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1597
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034904
  issn: 1572-1000
  databaseCode: AKRWK
  dateStart: 20040501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXPaCeOxCeVSDtHAilMTOi1uFirq7ggNbJG6WHbuiCNKotIde-O3M2EkFEg-JWxLbeYzHM9_En8eM_VY8NwnC1oD8ayBEhHYwJZZ5ZiwiiFjzIf2HvLxK-jfi7218u8TOm7UwRKusbb-36c5a11c6tTQ71WjU-R_GGL24BC6EedwyK8r-hTp98rygeXCRuy0EqXJAtZvMQ47jVZnKEKEyiiiFQU57477vnT5Cn84LXayx1Ro-Qte_4TpbsuUGO3ydKhgGPk8AHMH1myzcm-yuV965CX-o0B5bXzYHVRqYEHamWuAJHmfQBRzeMFSFv8F4AghvATV1ZGA6e8RjTyJH1wd6DqUqMfyuWXY_2eCiNzjvB_VOC0EhxOk0SNJI80SnnCtrogSjjDDMtTaIzkSWG4uSUVjIzWlss0wgpCgyFaL_y8NCI6b5xZbLcWm3GVgrVKS0KhRNqWqu8kQMVZLFqVAUu7RY1AhYFvX302YYD7Khm91L1yuSekX6Xmmx40Wjyifh-Ly6aHpONutLUWQSncTnzZJFszcq-HXDg0Y9JA5OmnFRpR3PniSinzTFEDrMWmzL683iA7iL5US4893H7rIfdOYJb3tseTqZ2X1ESFPddkOgzVa6f_71r14AzsgOhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6h5VAuiLY8lkI7lSgnoiWx8-pthUBLgT2UReJm2bFXLGqz0Xb3wL9nJk5WIPGQeotiTxKP7Zlv4s9jgAMtcpsQbA3YvwZSRmQHU2aZZ9YRgoiNGPN_yKthMriRv27j2xU4affCMK2ysf3eptfWurnTa7TZqyaT3nUYU_RSJ3BhzMPbrFZlTDa5A6v984vBsDXIQub1KYJcP2CBNvlQTfOqbGWZUxlFnMUg5-NxX3ZQrwHQ2hGdbcB6gyCx7z_yI6y48hP8eJotGEc-VQAe4u9nibg_w91peVev-WNFJtn5sgfUpcUZw2euhZ7j8RP7SDMcx7rwD5jOkBAu0mCdWJwv_tK155GT90PzgKUuKQJviHabMDo7HZ0MguawhaCQ8ngeJGlkRGJSIbSzUUKBRhjmxlgCaDLLrSPNaCoU9jh2WSYJVRSZDkndeVgYgjVb0CmnpdsBdE7qSBtdaF5VNULniRzrJItTqTl86ULUKlgVTfv5PIw_qmWc3au6VxT3ivK90oWjpVDl83C8XV22PafaLaakMkV-4m2xZCn2bBS-L_i9HR6K5icvuujSTRf_FAGgNKUoOsy6sO3HzbIBog7nZLj7v6_9Bh8Go6tLdXk-vPgCa1zi-W970JnPFm6fANPcfG0mxCP1AREv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Permeability+and+Retention+Effect%3A+A+key+facilitator+for+solid+tumor+targeting+by+nanoparticles&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Shinde%2C+Vinod+Ravasaheb&rft.au=Revi%2C+Neeraja&rft.au=Murugappan%2C+Sivasubramanian&rft.au=Singh%2C+Surya+Prakash&rft.date=2022-09-01&rft.eissn=1873-1597&rft.spage=102915&rft_id=info:doi/10.1016%2Fj.pdpdt.2022.102915&rft_id=info%3Apmid%2F35597441&rft.externalDocID=35597441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon