Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator

Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular b...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 11; pp. e2207622 - n/a
Main Authors Chong, Su Kong, Zhang, Peng, Li, Jie, Zhou, Yinong, Wang, Jingyuan, Zhang, Huairuo, Davydov, Albert V., Eckberg, Christopher, Deng, Peng, Tai, Lixuan, Xia, Jing, Wu, Ruqian, Wang, Kang L.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2023
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202207622

Cover

Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Dual‐gated Cr‐doped (Bi,Sb)2Te3 magnetic topological insulator devices are fabricated by combining molecular beam epitaxial growth and 2D transfer methods. The large gate‐tunability using mica as the gate dielectric leads to the observation of the reversible transition between two distinct topological phases, namely the quantum anomalous Hall and the anomalous Hall insulator, via electric field tuning.
AbstractList Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Dual‐gated Cr‐doped (Bi,Sb)2Te3 magnetic topological insulator devices are fabricated by combining molecular beam epitaxial growth and 2D transfer methods. The large gate‐tunability using mica as the gate dielectric leads to the observation of the reversible transition between two distinct topological phases, namely the quantum anomalous Hall and the anomalous Hall insulator, via electric field tuning.
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb) Te . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Author Zhang, Peng
Zhou, Yinong
Xia, Jing
Tai, Lixuan
Wu, Ruqian
Wang, Jingyuan
Eckberg, Christopher
Li, Jie
Zhang, Huairuo
Wang, Kang L.
Chong, Su Kong
Davydov, Albert V.
Deng, Peng
Author_xml – sequence: 1
  givenname: Su Kong
  orcidid: 0000-0002-2016-9802
  surname: Chong
  fullname: Chong, Su Kong
  email: sukongc@g.ucla.edu
  organization: University of California, Los Angeles
– sequence: 2
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: University of California, Los Angeles
– sequence: 3
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: University of California, Irvine
– sequence: 4
  givenname: Yinong
  surname: Zhou
  fullname: Zhou, Yinong
  organization: University of California, Irvine
– sequence: 5
  givenname: Jingyuan
  surname: Wang
  fullname: Wang, Jingyuan
  organization: University of California, Irvine
– sequence: 6
  givenname: Huairuo
  surname: Zhang
  fullname: Zhang, Huairuo
  organization: National Institute of Standards and Technology (NIST)
– sequence: 7
  givenname: Albert V.
  surname: Davydov
  fullname: Davydov, Albert V.
  organization: Inc
– sequence: 8
  givenname: Christopher
  surname: Eckberg
  fullname: Eckberg, Christopher
  organization: US Army Research Laboratory
– sequence: 9
  givenname: Peng
  surname: Deng
  fullname: Deng, Peng
  organization: University of California, Los Angeles
– sequence: 10
  givenname: Lixuan
  surname: Tai
  fullname: Tai, Lixuan
  organization: University of California, Los Angeles
– sequence: 11
  givenname: Jing
  surname: Xia
  fullname: Xia, Jing
  organization: University of California, Irvine
– sequence: 12
  givenname: Ruqian
  surname: Wu
  fullname: Wu, Ruqian
  organization: University of California, Irvine
– sequence: 13
  givenname: Kang L.
  orcidid: 0000-0002-9363-1279
  surname: Wang
  fullname: Wang, Kang L.
  email: wang@ee.ucla.edu
  organization: University of California, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36538624$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1961880$$D View this record in Osti.gov
BookMark eNqFkc1PFDEYhxuDkQW9ejSNXrzM2u-ZHjeAQgJRI56bTj-kpNOu7UwM_71dFjEhMZ56eJ-nb3_9HYGDlJMD4DVGa4wQ-aDtpNcEEYJ6QcgzsMKc4I4hyQ_ACknKOynYcAiOar1FCEmBxAtwSAWngyBsBb6dRWfmEoyO8EqnsF2inkNOMHt4nbc55h_3sy83uroKQ4Iafl10mpcJblKedMxLhec6RniR6k7O5SV47nWs7tXDeQy-fzy7PjnvLj9_ujjZXHaGMUQ6Tzzm1mBrBaKGYN73o2WUWTyQUWDhsSB6pJ64ceAUuV7KkUrv6dh8Ky09Bm_39-Y6B1VNmJ25MTmllkhhKfAwoAa930Pbkn8urs5qCtW4GHVy7emK9FwIIRHnDX33BL3NS0ktQqOGHpMBMdGoNw_UMk7Oqm0Jky536s-fNmC9B0zJtRbnHxGM1K40tStNPZbWBPZEaFHuW5iLDvHfmtxrv0J0d_9ZojanV5u_7m-eLanP
CitedBy_id crossref_primary_10_3390_nano13192655
crossref_primary_10_1063_5_0169917
crossref_primary_10_1021_acs_nanolett_2c04708
crossref_primary_10_1063_5_0215875
Cites_doi 10.1073/pnas.1818255116
10.1021/acs.nanolett.1c00378
10.1063/1.3382344
10.1093/nsr/nww069
10.1126/sciadv.1500740
10.1002/adma.201600919
10.1002/smll.201904322
10.1038/ncomms9474
10.1126/science.1234414
10.1073/pnas.1119010109
10.1038/nnano.2017.149
10.1103/PhysRevLett.97.167002
10.1038/s41567-018-0149-1
10.1038/s41467-022-33643-9
10.1063/1.4767998
10.1126/science.1187485
10.1103/PhysRevLett.117.126802
10.1038/s41586-018-0788-5
10.1038/s41565-018-0186-z
10.1103/PhysRevB.88.235131
10.1126/science.1201607
10.1126/science.1133734
10.1063/5.0076625
10.1063/1.1145652
10.1021/acs.nanolett.0c02873
10.1063/1.5040694
10.1103/PhysRevB.94.214502
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.114.146802
10.1103/PhysRevMaterials.4.044202
10.1103/PhysRevLett.113.137201
10.1038/nphys1689
10.1063/1.4813903
10.1038/nchem.1277
10.1103/PhysRevB.84.134408
10.1103/PhysRevB.98.140404
10.1088/1361-648X/ab2705
10.1103/PhysRevLett.77.3865
10.1038/ncomms5915
10.1103/PhysRevLett.123.036804
10.1103/PhysRevLett.115.036805
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.100.156404
10.1073/pnas.1424322112
10.1126/science.1256815
10.1038/s42254-018-0011-5
10.1088/1367-2630/ac1974
10.1103/PhysRevB.85.045118
10.1103/PhysRevLett.105.166601
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202207622
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1961880
36538624
10_1002_adma_202207622
ADMA202207622
Genre article
Journal Article
GrantInformation_xml – fundername: Gordon and Betty Moore Foundation
  funderid: GBMF10276
– fundername: Convergence Accelerator Track C
  funderid: 2040737
– fundername: Army Research Office
  funderid: W911NF‐20‐2‐0166; W911NF‐16‐1‐0472
– fundername: Basic Energy Sciences
  funderid: DE‐FG02‐05ER46237
– fundername: U.S. Department of Commerce
  funderid: 70NANB19H138
– fundername: National Science Foundation
  funderid: 1936383; DMR‐1807817
– fundername: U.S. Department of Energy
– fundername: Army Research Office
  grantid: W911NF-20-2-0166
– fundername: U.S. Department of Commerce
  grantid: 70NANB19H138
– fundername: Army Research Office
  grantid: W911NF-16-1-0472
– fundername: Basic Energy Sciences
  grantid: DE-FG02-05ER46237
– fundername: Gordon and Betty Moore Foundation
  grantid: GBMF10276
– fundername: National Science Foundation
  grantid: DMR-1807817
– fundername: National Science Foundation
  grantid: 1936383
– fundername: Convergence Accelerator Track C
  grantid: 2040737
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c4402-f2f15dc1dd603c21577bd434d182b616f162ab3f2eb8530e799b39ff3bc44d9d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Mon Dec 25 05:01:06 EST 2023
Fri Jul 11 10:12:39 EDT 2025
Fri Jul 25 04:16:55 EDT 2025
Mon Jul 21 06:07:48 EDT 2025
Wed Oct 01 03:14:24 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Jan 22 16:14:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords quantum anomalous Hall effect
electric fields
topological phase transitions
magnetic topological insulators
dual-gating
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4402-f2f15dc1dd603c21577bd434d182b616f162ab3f2eb8530e799b39ff3bc44d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-2016-9802
0000-0002-9363-1279
0000000220169802
0000000293631279
OpenAccessLink https://www.osti.gov/biblio/1961880
PMID 36538624
PQID 2787128046
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_1961880
proquest_miscellaneous_2756669055
proquest_journals_2787128046
pubmed_primary_36538624
crossref_primary_10_1002_adma_202207622
crossref_citationtrail_10_1002_adma_202207622
wiley_primary_10_1002_adma_202207622_ADMA202207622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2021; 21
2021; 23
2017; 4
2020; 20
2010; 105
2018; 564
2020; 16
2020; 10
2008; 100
2019; 123
1996; 77
2020; 4
2014; 5
2018; 5
1995; 66
1999; 59
2019; 116
2016; 117
2010; 6
2015; 1
2015; 6
2006; 97
2010; 329
2012; 101
2013; 88
2019; 31
2019; 1
2011; 84
2013; 103
2016; 94
2013; 340
2006; 314
2011; 332
2012; 109
2014; 113
2020; 2020
2015; 115
2022; 2208.13332
2015; 114
2015; 112
2022; 9
2017; 12
2010; 132
2022; 13
2016; 28
2018; 98
2012; 4
1994; 50
2014; 346
2012; 85
2018; 14
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Liu C. (e_1_2_8_32_1) 2020; 10
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Huang H. (e_1_2_8_7_1) 2020; 2020
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
Chong S. K. (e_1_2_8_46_1) 2022; 2208
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Phys. Rev. X
– volume: 28
  start-page: 6386
  year: 2016
  publication-title: Adv. Mater.
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 109
  start-page: 671
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 1316
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  year: 2020
  publication-title: Phys. Rev. Mater.
– volume: 4
  start-page: 252
  year: 2017
  publication-title: Natl Sci Rev
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 23
  year: 2021
  publication-title: New J Phys
– volume: 50
  year: 1994
  publication-title: Phys. Rev. B
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 126
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 16
  year: 2020
  publication-title: Small
– volume: 340
  start-page: 167
  year: 2013
  publication-title: Science
– volume: 564
  start-page: 390
  year: 2018
  publication-title: Nature
– volume: 13
  start-page: 6386
  year: 2022
  publication-title: Nat. Commun.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 4915
  year: 2014
  publication-title: Nat. Commun.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 8474
  year: 2015
  publication-title: Nat. Commun.
– volume: 66
  start-page: 2520
  year: 1995
  publication-title: Rev. Sci. Instrum.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 85
  year: 2012
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 584
  year: 2010
  publication-title: Nat. Phys.
– volume: 314
  start-page: 1757
  year: 2006
  publication-title: Science
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 8001
  year: 2020
  publication-title: Nano Lett.
– volume: 2208.13332
  year: 2022
  publication-title: arXiv:
– volume: 14
  start-page: 791
  year: 2018
  publication-title: Nat. Phys.
– volume: 329
  start-page: 61
  year: 2010
  publication-title: Science
– volume: 12
  start-page: 953
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 31
  year: 2019
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  start-page: 281
  year: 2012
  publication-title: Nat. Chem.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 332
  start-page: 560
  year: 2011
  publication-title: Science
– volume: 13
  start-page: 554
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 346
  start-page: 1344
  year: 2014
  publication-title: Science
– volume: 5
  year: 2018
  publication-title: Appl. Phys. Rev.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 21
  start-page: 3155
  year: 2021
  publication-title: Nano Lett.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_9_1
  doi: 10.1073/pnas.1818255116
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.nanolett.1c00378
– ident: e_1_2_8_52_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_43_1
  doi: 10.1093/nsr/nww069
– volume: 2208
  year: 2022
  ident: e_1_2_8_46_1
  publication-title: arXiv:
– ident: e_1_2_8_40_1
  doi: 10.1126/sciadv.1500740
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201600919
– ident: e_1_2_8_44_1
  doi: 10.1002/smll.201904322
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms9474
– ident: e_1_2_8_3_1
  doi: 10.1126/science.1234414
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.1119010109
– ident: e_1_2_8_18_1
  doi: 10.1038/nnano.2017.149
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.97.167002
– ident: e_1_2_8_30_1
  doi: 10.1038/s41567-018-0149-1
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-022-33643-9
– ident: e_1_2_8_36_1
  doi: 10.1063/1.4767998
– ident: e_1_2_8_2_1
  doi: 10.1126/science.1187485
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevLett.117.126802
– ident: e_1_2_8_34_1
  doi: 10.1038/s41586-018-0788-5
– ident: e_1_2_8_28_1
  doi: 10.1038/s41565-018-0186-z
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevB.88.235131
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1201607
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1133734
– ident: e_1_2_8_20_1
  doi: 10.1063/5.0076625
– ident: e_1_2_8_48_1
  doi: 10.1063/1.1145652
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.nanolett.0c02873
– ident: e_1_2_8_45_1
  doi: 10.1063/1.5040694
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevB.94.214502
– ident: e_1_2_8_50_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevLett.114.146802
– ident: e_1_2_8_13_1
  doi: 10.1103/PhysRevMaterials.4.044202
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevLett.113.137201
– ident: e_1_2_8_25_1
  doi: 10.1038/nphys1689
– ident: e_1_2_8_23_1
  doi: 10.1063/1.4813903
– ident: e_1_2_8_22_1
  doi: 10.1038/nchem.1277
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevB.84.134408
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevB.98.140404
– ident: e_1_2_8_14_1
  doi: 10.1088/1361-648X/ab2705
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_29_1
  doi: 10.1038/ncomms5915
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevLett.123.036804
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.115.036805
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.59.1758
– volume: 10
  year: 2020
  ident: e_1_2_8_32_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevLett.100.156404
– ident: e_1_2_8_39_1
  doi: 10.1073/pnas.1424322112
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1256815
– ident: e_1_2_8_5_1
  doi: 10.1038/s42254-018-0011-5
– volume: 2020
  year: 2020
  ident: e_1_2_8_7_1
  publication-title: Research
– ident: e_1_2_8_15_1
  doi: 10.1088/1367-2630/ac1974
– ident: e_1_2_8_16_1
  doi: 10.1103/PhysRevB.85.045118
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.105.166601
SSID ssj0009606
Score 2.4577863
Snippet Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of...
Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2207622
SubjectTerms Antimony
Bismuth
Charge density
dual‐gating
electric fields
Epitaxial growth
First principles
Magnetic properties
magnetic topological insulators
Materials science
Molecular beam epitaxy
Phase transitions
quantum anomalous Hall effect
Thin films
Topological insulators
topological phase transitions
Topology
Two dimensional materials
Title Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207622
https://www.ncbi.nlm.nih.gov/pubmed/36538624
https://www.proquest.com/docview/2787128046
https://www.proquest.com/docview/2756669055
https://www.osti.gov/biblio/1961880
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuAA5R1akJGQOLl1_EpyXEGrBWkRj1bqzfJTVGwTxG4u_fWMnU3aRSAkuCVxRnI8Hs839uQbhF6xylLrlCVBSkOEEI40gMNJHWMZ6iir4NPWwPKDWpyJ9-fy_MZf_AM_xLThliwjr9fJwI1dH12ThhqfeYMYg0icpUW45DKf036-5o9K8DyT7XFJGiXqkbWRsqNd8R2vNOvAun6HOHcBbPZAJ_eQGfs-JJ58O-w39tBd_ULr-D8ft4fubuEpng_z6T66FdoH6M4N0sKH6MtxrpyTlIuXpr0YC4DhLuLToeRCbvv4FRzkGl-02OBPPSiwv8Tztrs0q65f44VZrfC7lAifov5H6Ozk-PTNgmxLMxAnIOIkkcVSeld6ryh3ABuqynrBhYdwxapSxVIxY3lkwQIeoKFqGsubGLkFed94_hjN2q4NTxH2Eh5XpvYptpMgJZWlXlDuS-4qVxaIjKrRbstbnspnrPTAuMx0Giw9DVaBXk_vfx8YO_745n7StAaskQhzXcoschtdpiI4NS3QwTgB9Nau15rB-gYenQpVoJdTM1hkOmYxbYAB1IlQX6mGSlmgJ8PEmTrCFTgYxUSBWFb_X3qo52-X8-nu2b8I7aPbcM2HtLkDNNv86MNzwFEb-yLbyk-8hBI3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h5QAceFNCCxgJiVPaxK8kxxVttYVuxWMrcbNiOxYV2wSxmwu_nplkk7IIhATHOB7J8Xg839iTbwBe8swm1mkbV0qVsZTSxQXi8DgPIa3yoLLK09HA_EzPzuWbT2rIJqR_YXp-iPHAjSyj26_JwOlA-uCKNbT0HXEQ5xiKc9yFr9MlHdnm4YcrBikC6B3dnlBxoWU-8DYm_GBbfssvTRq0r99hzm0I2_mg4ztgh9H3qSdf9tu13XfffyF2_K_Puwu3NwiVTfsldQ-uVfV9uPUTb-ED-HjUFc8h_bJ5WV8MNcBYE9iir7rQvXv3GX3kil3UrGTvW9Rhe8mmdXNZLpt2xWblcslOKBeeAv-HcH58tHg9izfVGWInMeiMAw-p8i71XifCIXLIMuulkB4jFqtTHVLNSysCryxCgqTKisKKIgRhUd4XXjyCSd3U1WNgXmFzVuaewjuFUkrbxMtE-FS4zKURxINujNtQl1MFjaXpSZe5ocky42RF8Grs_7Un7fhjz11StUG4QZy5jpKL3NqkVAcnTyLYG1aA2Zj2ynDc4tCpJ1JH8GJ8jUZJNy1lXeEEGuLU17pIlIpgp18540CERh-juYyAd_r_ywjN9HA-HZ-e_IvQc7gxW8xPzenJ2dtduIntos-i24PJ-ltbPUVYtbbPOsP5AeSXFlM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hRUJwKG8aWsBISJzSJn4lOa7arrbAVgVaqTfLj1hU3SZVd3Ph13ecbNIuAiHBMbZHcjwezzfO5BuADzQzibHSxKUQOuac27hAHB7n3qdl7kVWunA1MDuS01P-6Uyc3fmLv-OHGC7cgmW053Uw8Cvnd29JQ7VreYMoxUic4iF8n0sMsQIs-nZLIBXwecu2x0RcSJ73tI0J3V2XX3NLoxrN63eQcx3Bti5o8hh0P_ku8-Rip1maHfvzF17H_3m7J7Cxwqdk3G2op3CvrJ7Bozushc_h-0FbOidol8x0dd5XACO1JyddzYW27_gHesgFOa-IJl8b1GBzScZVfanndbMgUz2fk8OQCR_C_hdwOjk42ZvGq9oMseUYcsae-lQ4mzonE2YRN2SZcZxxh_GKkan0qaTaME9Lg4AgKbOiMKzwnhmUd4VjL2FU1VW5CcQJbM507kJwJ1BKSJM4njCXMpvZNIK4V42yK-LyUD9jrjrKZarCYqlhsSL4OIy_6ig7_jhyK2haIdgIjLk2pBbZpUpDFZw8iWC73wBqZdgLRfGAQ5eecBnB-6EbTTJ8Z9FViQuoAqO-lEUiRASvuo0zTIRJ9DCS8ghoq_6_zFCN92fj4en1vwi9gwfH-xP15fDo8xY8xGbWpdBtw2h53ZRvEFMtzdvWbG4AhHAVAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Manipulation+of+Topological+Phases+in+a+Quantum+Anomalous+Hall+Insulator&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chong%2C+Su+Kong&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Jie&rft.au=Zhou%2C+Yinong&rft.date=2023-03-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202207622&rft.externalDocID=1961880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon