Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular b...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 11; pp. e2207622 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2023
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202207622 |
Cover
Abstract | Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.
Dual‐gated Cr‐doped (Bi,Sb)2Te3 magnetic topological insulator devices are fabricated by combining molecular beam epitaxial growth and 2D transfer methods. The large gate‐tunability using mica as the gate dielectric leads to the observation of the reversible transition between two distinct topological phases, namely the quantum anomalous Hall and the anomalous Hall insulator, via electric field tuning. |
---|---|
AbstractList | Abstract
Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)
2
Te
3
. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Dual‐gated Cr‐doped (Bi,Sb)2Te3 magnetic topological insulator devices are fabricated by combining molecular beam epitaxial growth and 2D transfer methods. The large gate‐tunability using mica as the gate dielectric leads to the observation of the reversible transition between two distinct topological phases, namely the quantum anomalous Hall and the anomalous Hall insulator, via electric field tuning. Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb) 2 Te 3 . In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb) Te . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)-grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin-film deposition and 2D material stacking techniques, to create dual-gated devices of the MBE-grown quantum anomalous Hall insulator, Cr-doped (Bi,Sb)2 Te3 . In these devices, orthogonal control over the field-induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology. |
Author | Zhang, Peng Zhou, Yinong Xia, Jing Tai, Lixuan Wu, Ruqian Wang, Jingyuan Eckberg, Christopher Li, Jie Zhang, Huairuo Wang, Kang L. Chong, Su Kong Davydov, Albert V. Deng, Peng |
Author_xml | – sequence: 1 givenname: Su Kong orcidid: 0000-0002-2016-9802 surname: Chong fullname: Chong, Su Kong email: sukongc@g.ucla.edu organization: University of California, Los Angeles – sequence: 2 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: University of California, Los Angeles – sequence: 3 givenname: Jie surname: Li fullname: Li, Jie organization: University of California, Irvine – sequence: 4 givenname: Yinong surname: Zhou fullname: Zhou, Yinong organization: University of California, Irvine – sequence: 5 givenname: Jingyuan surname: Wang fullname: Wang, Jingyuan organization: University of California, Irvine – sequence: 6 givenname: Huairuo surname: Zhang fullname: Zhang, Huairuo organization: National Institute of Standards and Technology (NIST) – sequence: 7 givenname: Albert V. surname: Davydov fullname: Davydov, Albert V. organization: Inc – sequence: 8 givenname: Christopher surname: Eckberg fullname: Eckberg, Christopher organization: US Army Research Laboratory – sequence: 9 givenname: Peng surname: Deng fullname: Deng, Peng organization: University of California, Los Angeles – sequence: 10 givenname: Lixuan surname: Tai fullname: Tai, Lixuan organization: University of California, Los Angeles – sequence: 11 givenname: Jing surname: Xia fullname: Xia, Jing organization: University of California, Irvine – sequence: 12 givenname: Ruqian surname: Wu fullname: Wu, Ruqian organization: University of California, Irvine – sequence: 13 givenname: Kang L. orcidid: 0000-0002-9363-1279 surname: Wang fullname: Wang, Kang L. email: wang@ee.ucla.edu organization: University of California, Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36538624$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1961880$$D View this record in Osti.gov |
BookMark | eNqFkc1PFDEYhxuDkQW9ejSNXrzM2u-ZHjeAQgJRI56bTj-kpNOu7UwM_71dFjEhMZ56eJ-nb3_9HYGDlJMD4DVGa4wQ-aDtpNcEEYJ6QcgzsMKc4I4hyQ_ACknKOynYcAiOar1FCEmBxAtwSAWngyBsBb6dRWfmEoyO8EqnsF2inkNOMHt4nbc55h_3sy83uroKQ4Iafl10mpcJblKedMxLhec6RniR6k7O5SV47nWs7tXDeQy-fzy7PjnvLj9_ujjZXHaGMUQ6Tzzm1mBrBaKGYN73o2WUWTyQUWDhsSB6pJ64ceAUuV7KkUrv6dh8Ky09Bm_39-Y6B1VNmJ25MTmllkhhKfAwoAa930Pbkn8urs5qCtW4GHVy7emK9FwIIRHnDX33BL3NS0ktQqOGHpMBMdGoNw_UMk7Oqm0Jky536s-fNmC9B0zJtRbnHxGM1K40tStNPZbWBPZEaFHuW5iLDvHfmtxrv0J0d_9ZojanV5u_7m-eLanP |
CitedBy_id | crossref_primary_10_3390_nano13192655 crossref_primary_10_1063_5_0169917 crossref_primary_10_1021_acs_nanolett_2c04708 crossref_primary_10_1063_5_0215875 |
Cites_doi | 10.1073/pnas.1818255116 10.1021/acs.nanolett.1c00378 10.1063/1.3382344 10.1093/nsr/nww069 10.1126/sciadv.1500740 10.1002/adma.201600919 10.1002/smll.201904322 10.1038/ncomms9474 10.1126/science.1234414 10.1073/pnas.1119010109 10.1038/nnano.2017.149 10.1103/PhysRevLett.97.167002 10.1038/s41567-018-0149-1 10.1038/s41467-022-33643-9 10.1063/1.4767998 10.1126/science.1187485 10.1103/PhysRevLett.117.126802 10.1038/s41586-018-0788-5 10.1038/s41565-018-0186-z 10.1103/PhysRevB.88.235131 10.1126/science.1201607 10.1126/science.1133734 10.1063/5.0076625 10.1063/1.1145652 10.1021/acs.nanolett.0c02873 10.1063/1.5040694 10.1103/PhysRevB.94.214502 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.114.146802 10.1103/PhysRevMaterials.4.044202 10.1103/PhysRevLett.113.137201 10.1038/nphys1689 10.1063/1.4813903 10.1038/nchem.1277 10.1103/PhysRevB.84.134408 10.1103/PhysRevB.98.140404 10.1088/1361-648X/ab2705 10.1103/PhysRevLett.77.3865 10.1038/ncomms5915 10.1103/PhysRevLett.123.036804 10.1103/PhysRevLett.115.036805 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.100.156404 10.1073/pnas.1424322112 10.1126/science.1256815 10.1038/s42254-018-0011-5 10.1088/1367-2630/ac1974 10.1103/PhysRevB.85.045118 10.1103/PhysRevLett.105.166601 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.202207622 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1961880 36538624 10_1002_adma_202207622 ADMA202207622 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Gordon and Betty Moore Foundation funderid: GBMF10276 – fundername: Convergence Accelerator Track C funderid: 2040737 – fundername: Army Research Office funderid: W911NF‐20‐2‐0166; W911NF‐16‐1‐0472 – fundername: Basic Energy Sciences funderid: DE‐FG02‐05ER46237 – fundername: U.S. Department of Commerce funderid: 70NANB19H138 – fundername: National Science Foundation funderid: 1936383; DMR‐1807817 – fundername: U.S. Department of Energy – fundername: Army Research Office grantid: W911NF-20-2-0166 – fundername: U.S. Department of Commerce grantid: 70NANB19H138 – fundername: Army Research Office grantid: W911NF-16-1-0472 – fundername: Basic Energy Sciences grantid: DE-FG02-05ER46237 – fundername: Gordon and Betty Moore Foundation grantid: GBMF10276 – fundername: National Science Foundation grantid: DMR-1807817 – fundername: National Science Foundation grantid: 1936383 – fundername: Convergence Accelerator Track C grantid: 2040737 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c4402-f2f15dc1dd603c21577bd434d182b616f162ab3f2eb8530e799b39ff3bc44d9d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Mon Dec 25 05:01:06 EST 2023 Fri Jul 11 10:12:39 EDT 2025 Fri Jul 25 04:16:55 EDT 2025 Mon Jul 21 06:07:48 EDT 2025 Wed Oct 01 03:14:24 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Jan 22 16:14:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | quantum anomalous Hall effect electric fields topological phase transitions magnetic topological insulators dual-gating |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4402-f2f15dc1dd603c21577bd434d182b616f162ab3f2eb8530e799b39ff3bc44d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0002-2016-9802 0000-0002-9363-1279 0000000220169802 0000000293631279 |
OpenAccessLink | https://www.osti.gov/biblio/1961880 |
PMID | 36538624 |
PQID | 2787128046 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1961880 proquest_miscellaneous_2756669055 proquest_journals_2787128046 pubmed_primary_36538624 crossref_primary_10_1002_adma_202207622 crossref_citationtrail_10_1002_adma_202207622 wiley_primary_10_1002_adma_202207622_ADMA202207622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2021; 21 2021; 23 2017; 4 2020; 20 2010; 105 2018; 564 2020; 16 2020; 10 2008; 100 2019; 123 1996; 77 2020; 4 2014; 5 2018; 5 1995; 66 1999; 59 2019; 116 2016; 117 2010; 6 2015; 1 2015; 6 2006; 97 2010; 329 2012; 101 2013; 88 2019; 31 2019; 1 2011; 84 2013; 103 2016; 94 2013; 340 2006; 314 2011; 332 2012; 109 2014; 113 2020; 2020 2015; 115 2022; 2208.13332 2015; 114 2015; 112 2022; 9 2017; 12 2010; 132 2022; 13 2016; 28 2018; 98 2012; 4 1994; 50 2014; 346 2012; 85 2018; 14 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Liu C. (e_1_2_8_32_1) 2020; 10 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Huang H. (e_1_2_8_7_1) 2020; 2020 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 Chong S. K. (e_1_2_8_46_1) 2022; 2208 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Phys. Rev. X – volume: 28 start-page: 6386 year: 2016 publication-title: Adv. Mater. – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 2020 year: 2020 publication-title: Research – volume: 109 start-page: 671 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 1316 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 year: 2020 publication-title: Phys. Rev. Mater. – volume: 4 start-page: 252 year: 2017 publication-title: Natl Sci Rev – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 23 year: 2021 publication-title: New J Phys – volume: 50 year: 1994 publication-title: Phys. Rev. B – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 126 year: 2019 publication-title: Nat. Rev. Phys. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 16 year: 2020 publication-title: Small – volume: 340 start-page: 167 year: 2013 publication-title: Science – volume: 564 start-page: 390 year: 2018 publication-title: Nature – volume: 13 start-page: 6386 year: 2022 publication-title: Nat. Commun. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 4915 year: 2014 publication-title: Nat. Commun. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 8474 year: 2015 publication-title: Nat. Commun. – volume: 66 start-page: 2520 year: 1995 publication-title: Rev. Sci. Instrum. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 88 year: 2013 publication-title: Phys. Rev. B – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 6 start-page: 584 year: 2010 publication-title: Nat. Phys. – volume: 314 start-page: 1757 year: 2006 publication-title: Science – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 20 start-page: 8001 year: 2020 publication-title: Nano Lett. – volume: 2208.13332 year: 2022 publication-title: arXiv: – volume: 14 start-page: 791 year: 2018 publication-title: Nat. Phys. – volume: 329 start-page: 61 year: 2010 publication-title: Science – volume: 12 start-page: 953 year: 2017 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 31 year: 2019 publication-title: J. Phys.: Condens. Matter – volume: 4 start-page: 281 year: 2012 publication-title: Nat. Chem. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 332 start-page: 560 year: 2011 publication-title: Science – volume: 13 start-page: 554 year: 2018 publication-title: Nat. Nanotechnol. – volume: 346 start-page: 1344 year: 2014 publication-title: Science – volume: 5 year: 2018 publication-title: Appl. Phys. Rev. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 21 start-page: 3155 year: 2021 publication-title: Nano Lett. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_9_1 doi: 10.1073/pnas.1818255116 – ident: e_1_2_8_19_1 doi: 10.1021/acs.nanolett.1c00378 – ident: e_1_2_8_52_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_43_1 doi: 10.1093/nsr/nww069 – volume: 2208 year: 2022 ident: e_1_2_8_46_1 publication-title: arXiv: – ident: e_1_2_8_40_1 doi: 10.1126/sciadv.1500740 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201600919 – ident: e_1_2_8_44_1 doi: 10.1002/smll.201904322 – ident: e_1_2_8_8_1 doi: 10.1038/ncomms9474 – ident: e_1_2_8_3_1 doi: 10.1126/science.1234414 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1119010109 – ident: e_1_2_8_18_1 doi: 10.1038/nnano.2017.149 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.97.167002 – ident: e_1_2_8_30_1 doi: 10.1038/s41567-018-0149-1 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-022-33643-9 – ident: e_1_2_8_36_1 doi: 10.1063/1.4767998 – ident: e_1_2_8_2_1 doi: 10.1126/science.1187485 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevLett.117.126802 – ident: e_1_2_8_34_1 doi: 10.1038/s41586-018-0788-5 – ident: e_1_2_8_28_1 doi: 10.1038/s41565-018-0186-z – ident: e_1_2_8_12_1 doi: 10.1103/PhysRevB.88.235131 – ident: e_1_2_8_6_1 doi: 10.1126/science.1201607 – ident: e_1_2_8_1_1 doi: 10.1126/science.1133734 – ident: e_1_2_8_20_1 doi: 10.1063/5.0076625 – ident: e_1_2_8_48_1 doi: 10.1063/1.1145652 – ident: e_1_2_8_41_1 doi: 10.1021/acs.nanolett.0c02873 – ident: e_1_2_8_45_1 doi: 10.1063/1.5040694 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevB.94.214502 – ident: e_1_2_8_50_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_8_31_1 doi: 10.1103/PhysRevLett.114.146802 – ident: e_1_2_8_13_1 doi: 10.1103/PhysRevMaterials.4.044202 – ident: e_1_2_8_4_1 doi: 10.1103/PhysRevLett.113.137201 – ident: e_1_2_8_25_1 doi: 10.1038/nphys1689 – ident: e_1_2_8_23_1 doi: 10.1063/1.4813903 – ident: e_1_2_8_22_1 doi: 10.1038/nchem.1277 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevB.84.134408 – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevB.98.140404 – ident: e_1_2_8_14_1 doi: 10.1088/1361-648X/ab2705 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms5915 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevLett.123.036804 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.115.036805 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.59.1758 – volume: 10 year: 2020 ident: e_1_2_8_32_1 publication-title: Phys. Rev. X – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevLett.100.156404 – ident: e_1_2_8_39_1 doi: 10.1073/pnas.1424322112 – ident: e_1_2_8_33_1 doi: 10.1126/science.1256815 – ident: e_1_2_8_5_1 doi: 10.1038/s42254-018-0011-5 – volume: 2020 year: 2020 ident: e_1_2_8_7_1 publication-title: Research – ident: e_1_2_8_15_1 doi: 10.1088/1367-2630/ac1974 – ident: e_1_2_8_16_1 doi: 10.1103/PhysRevB.85.045118 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.105.166601 |
SSID | ssj0009606 |
Score | 2.4577863 |
Snippet | Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of... Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2207622 |
SubjectTerms | Antimony Bismuth Charge density dual‐gating electric fields Epitaxial growth First principles Magnetic properties magnetic topological insulators Materials science Molecular beam epitaxy Phase transitions quantum anomalous Hall effect Thin films Topological insulators topological phase transitions Topology Two dimensional materials |
Title | Electrical Manipulation of Topological Phases in a Quantum Anomalous Hall Insulator |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202207622 https://www.ncbi.nlm.nih.gov/pubmed/36538624 https://www.proquest.com/docview/2787128046 https://www.proquest.com/docview/2756669055 https://www.osti.gov/biblio/1961880 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQnuAA5R1akJGQOLl1_EpyXEGrBWkRj1bqzfJTVGwTxG4u_fWMnU3aRSAkuCVxRnI8Hs839uQbhF6xylLrlCVBSkOEEI40gMNJHWMZ6iir4NPWwPKDWpyJ9-fy_MZf_AM_xLThliwjr9fJwI1dH12ThhqfeYMYg0icpUW45DKf036-5o9K8DyT7XFJGiXqkbWRsqNd8R2vNOvAun6HOHcBbPZAJ_eQGfs-JJ58O-w39tBd_ULr-D8ft4fubuEpng_z6T66FdoH6M4N0sKH6MtxrpyTlIuXpr0YC4DhLuLToeRCbvv4FRzkGl-02OBPPSiwv8Tztrs0q65f44VZrfC7lAifov5H6Ozk-PTNgmxLMxAnIOIkkcVSeld6ryh3ABuqynrBhYdwxapSxVIxY3lkwQIeoKFqGsubGLkFed94_hjN2q4NTxH2Eh5XpvYptpMgJZWlXlDuS-4qVxaIjKrRbstbnspnrPTAuMx0Giw9DVaBXk_vfx8YO_745n7StAaskQhzXcoschtdpiI4NS3QwTgB9Nau15rB-gYenQpVoJdTM1hkOmYxbYAB1IlQX6mGSlmgJ8PEmTrCFTgYxUSBWFb_X3qo52-X8-nu2b8I7aPbcM2HtLkDNNv86MNzwFEb-yLbyk-8hBI3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h5QAceFNCCxgJiVPaxK8kxxVttYVuxWMrcbNiOxYV2wSxmwu_nplkk7IIhATHOB7J8Xg839iTbwBe8swm1mkbV0qVsZTSxQXi8DgPIa3yoLLK09HA_EzPzuWbT2rIJqR_YXp-iPHAjSyj26_JwOlA-uCKNbT0HXEQ5xiKc9yFr9MlHdnm4YcrBikC6B3dnlBxoWU-8DYm_GBbfssvTRq0r99hzm0I2_mg4ztgh9H3qSdf9tu13XfffyF2_K_Puwu3NwiVTfsldQ-uVfV9uPUTb-ED-HjUFc8h_bJ5WV8MNcBYE9iir7rQvXv3GX3kil3UrGTvW9Rhe8mmdXNZLpt2xWblcslOKBeeAv-HcH58tHg9izfVGWInMeiMAw-p8i71XifCIXLIMuulkB4jFqtTHVLNSysCryxCgqTKisKKIgRhUd4XXjyCSd3U1WNgXmFzVuaewjuFUkrbxMtE-FS4zKURxINujNtQl1MFjaXpSZe5ocky42RF8Grs_7Un7fhjz11StUG4QZy5jpKL3NqkVAcnTyLYG1aA2Zj2ynDc4tCpJ1JH8GJ8jUZJNy1lXeEEGuLU17pIlIpgp18540CERh-juYyAd_r_ywjN9HA-HZ-e_IvQc7gxW8xPzenJ2dtduIntos-i24PJ-ltbPUVYtbbPOsP5AeSXFlM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hRUJwKG8aWsBISJzSJn4lOa7arrbAVgVaqTfLj1hU3SZVd3Ph13ecbNIuAiHBMbZHcjwezzfO5BuADzQzibHSxKUQOuac27hAHB7n3qdl7kVWunA1MDuS01P-6Uyc3fmLv-OHGC7cgmW053Uw8Cvnd29JQ7VreYMoxUic4iF8n0sMsQIs-nZLIBXwecu2x0RcSJ73tI0J3V2XX3NLoxrN63eQcx3Bti5o8hh0P_ku8-Rip1maHfvzF17H_3m7J7Cxwqdk3G2op3CvrJ7Bozushc_h-0FbOidol8x0dd5XACO1JyddzYW27_gHesgFOa-IJl8b1GBzScZVfanndbMgUz2fk8OQCR_C_hdwOjk42ZvGq9oMseUYcsae-lQ4mzonE2YRN2SZcZxxh_GKkan0qaTaME9Lg4AgKbOiMKzwnhmUd4VjL2FU1VW5CcQJbM507kJwJ1BKSJM4njCXMpvZNIK4V42yK-LyUD9jrjrKZarCYqlhsSL4OIy_6ig7_jhyK2haIdgIjLk2pBbZpUpDFZw8iWC73wBqZdgLRfGAQ5eecBnB-6EbTTJ8Z9FViQuoAqO-lEUiRASvuo0zTIRJ9DCS8ghoq_6_zFCN92fj4en1vwi9gwfH-xP15fDo8xY8xGbWpdBtw2h53ZRvEFMtzdvWbG4AhHAVAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Manipulation+of+Topological+Phases+in+a+Quantum+Anomalous+Hall+Insulator&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chong%2C+Su+Kong&rft.au=Zhang%2C+Peng&rft.au=Li%2C+Jie&rft.au=Zhou%2C+Yinong&rft.date=2023-03-01&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202207622&rft.externalDocID=1961880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |