Allelochemicals targeted to balance competing selections in African agroecosystems
Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate re...
Saved in:
Published in | Nature plants Vol. 5; no. 12; pp. 1229 - 1236 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2055-0278 2055-0278 |
DOI | 10.1038/s41477-019-0563-0 |
Cover
Abstract | Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (
Tannin1
and
Tannin2
) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and
Quelea quelea
supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals.
Tannins in grains prevent sparrow consumption but cause bitterness for people with sensitive taste. A study uncovered genes controlling tannin presence in sorghum and revealed a coevolution among humans, sorghums and birds linked by tannins in African agroecosystems. |
---|---|
AbstractList | Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (Tannin1 and Tannin2) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals. Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (Tannin1 and Tannin2) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals.Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (Tannin1 and Tannin2) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals. Tannins in grains prevent sparrow consumption but cause bitterness for people with sensitive taste. A study uncovered genes controlling tannin presence in sorghum and revealed a coevolution among humans, sorghums and birds linked by tannins in African agroecosystems. Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes ( Tannin1 and Tannin2 ) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and Quelea quelea supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals. Tannins in grains prevent sparrow consumption but cause bitterness for people with sensitive taste. A study uncovered genes controlling tannin presence in sorghum and revealed a coevolution among humans, sorghums and birds linked by tannins in African agroecosystems. |
Author | Tesso, Tesfaye T. Wu, Yun Dweikat, Ismail M. Wang, Jinyu Wang, Ming Li Bean, Scott R. Tian, Bin Li, Xin Perumal, Ramasamy Morris, Geoffrey Yu, Jianming Guo, Tingting Bai, Guihua Tuinstra, Mitchell R. Trick, Harold N. Li, Xianran Wu, Yuye Mu, Qi |
Author_xml | – sequence: 1 givenname: Yuye surname: Wu fullname: Wu, Yuye organization: Department of Agronomy, Kansas State University, National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University – sequence: 2 givenname: Tingting surname: Guo fullname: Guo, Tingting organization: Department of Agronomy, Iowa State University – sequence: 3 givenname: Qi orcidid: 0000-0001-9093-9123 surname: Mu fullname: Mu, Qi organization: Department of Agronomy, Iowa State University – sequence: 4 givenname: Jinyu surname: Wang fullname: Wang, Jinyu organization: Department of Agronomy, Iowa State University – sequence: 5 givenname: Xin surname: Li fullname: Li, Xin organization: Department of Agronomy, Iowa State University – sequence: 6 givenname: Yun surname: Wu fullname: Wu, Yun organization: Department of Agronomy, Iowa State University – sequence: 7 givenname: Bin orcidid: 0000-0002-5892-0251 surname: Tian fullname: Tian, Bin organization: Department of Plant Pathology, Kansas State University – sequence: 8 givenname: Ming Li surname: Wang fullname: Wang, Ming Li organization: USDA–ARS – sequence: 9 givenname: Guihua orcidid: 0000-0002-1194-319X surname: Bai fullname: Bai, Guihua organization: Department of Agronomy, Kansas State University, USDA–ARS, Hard Winter Wheat Genetics Research Unit – sequence: 10 givenname: Ramasamy surname: Perumal fullname: Perumal, Ramasamy organization: Agricultural Research Center, Kansas State University – sequence: 11 givenname: Harold N. surname: Trick fullname: Trick, Harold N. organization: Department of Plant Pathology, Kansas State University – sequence: 12 givenname: Scott R. orcidid: 0000-0001-8678-8094 surname: Bean fullname: Bean, Scott R. organization: USDA–ARS, Grain Quality and Structure Research Unit – sequence: 13 givenname: Ismail M. surname: Dweikat fullname: Dweikat, Ismail M. organization: Department of Agronomy and Horticulture, University of Nebraska – sequence: 14 givenname: Mitchell R. surname: Tuinstra fullname: Tuinstra, Mitchell R. organization: Department of Agronomy, Purdue University – sequence: 15 givenname: Geoffrey surname: Morris fullname: Morris, Geoffrey organization: Department of Agronomy, Kansas State University – sequence: 16 givenname: Tesfaye T. surname: Tesso fullname: Tesso, Tesfaye T. organization: Department of Agronomy, Kansas State University – sequence: 17 givenname: Jianming orcidid: 0000-0001-5326-3099 surname: Yu fullname: Yu, Jianming email: jmyu@iastate.edu organization: Department of Agronomy, Iowa State University – sequence: 18 givenname: Xianran orcidid: 0000-0002-4252-6911 surname: Li fullname: Li, Xianran email: lixr@iastate.edu organization: Department of Agronomy, Iowa State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31792396$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAURlGVqPnpPEA3laVuunFzAWPwchSlTaSRIkXJGmF8mTqyYQrMIm8frEnSKlK7gsX5Lof7nZEjHzwS8pnCdwpcXaSGNlLWQLsaRMtr-EBOGQhRA5Pq6K_7CVml9AgAVArBW_hITjiVHeNde0ru1tOEU7C_cB6tmVKVTdxixqHKoerNZLzFyoZ5h3n02yrhhDaPwadq9NXaxRLyldnGgDakp5RxTp_IsSuTcPVynpOHH1f3l9f15vbnzeV6U9uGq1w7Qzl20Ld9A6ylpuWUMWRKGuwtdahaJ4STwNAOirKhfJRB03AxOKXQAT8n3w5zdzH83mPKeh6Txak4Y9gnzTgDJamgqqBf36GPYR99sVsoDrJhHS3Ulxdq38846F0cZxOf9Ou2CkAPgI0hpYjuDaGgl1L0oRRdXPVSil4s5buMHbNZVpijGaf_Jtkhmcorfovxj_S_Q8-GTJ8E |
CitedBy_id | crossref_primary_10_1002_csc2_20348 crossref_primary_10_1007_s12042_024_09376_y crossref_primary_10_1038_s41467_022_28680_3 crossref_primary_10_1007_s00049_020_00302_8 crossref_primary_10_1021_acs_jafc_3c04942 crossref_primary_10_1007_s42994_022_00089_y crossref_primary_10_1007_s11101_023_09873_0 crossref_primary_10_1016_j_molp_2022_03_006 crossref_primary_10_1016_j_fm_2022_104206 crossref_primary_10_1016_j_jgg_2024_07_016 crossref_primary_10_1007_s00122_020_03762_2 crossref_primary_10_1002_pld3_70055 crossref_primary_10_1002_ppj2_70013 crossref_primary_10_1016_j_jplph_2024_154379 crossref_primary_10_3389_fpls_2022_1040909 crossref_primary_10_1021_acs_jafc_3c08535 crossref_primary_10_1038_s41467_022_33419_1 crossref_primary_10_1073_pnas_2300094120 crossref_primary_10_1016_j_foodchem_2020_127970 crossref_primary_10_1111_pce_15092 crossref_primary_10_7717_peerj_17438 crossref_primary_10_1016_j_csbj_2020_02_009 crossref_primary_10_1038_s41598_023_32450_6 crossref_primary_10_1111_tpj_15853 crossref_primary_10_1002_csc2_20609 crossref_primary_10_1007_s00122_023_04534_4 crossref_primary_10_17221_16_2023_CJGPB crossref_primary_10_1007_s12520_020_01112_3 crossref_primary_10_1038_s41477_019_0567_9 crossref_primary_10_1042_ETLS20230067 crossref_primary_10_1073_pnas_2417264122 crossref_primary_10_1093_g3journal_jkae145 crossref_primary_10_1007_s44307_024_00039_3 crossref_primary_10_1093_g3journal_jkab154 crossref_primary_10_1007_s12161_020_01874_5 crossref_primary_10_1016_j_ijfoodmicro_2023_110100 crossref_primary_10_1007_s11103_021_01159_3 crossref_primary_10_3389_fgene_2023_1143395 crossref_primary_10_1016_j_cj_2024_02_011 crossref_primary_10_1111_tpj_15549 crossref_primary_10_1007_s00425_021_03742_w crossref_primary_10_1007_s11032_024_01463_y crossref_primary_10_1093_g3journal_jkab060 crossref_primary_10_1016_j_ijfoodmicro_2022_109815 crossref_primary_10_1007_s00122_023_04307_z crossref_primary_10_1016_j_jia_2023_12_023 crossref_primary_10_1002_tpg2_20038 crossref_primary_10_1016_j_phytochem_2020_112645 crossref_primary_10_1016_j_ijfoodmicro_2023_110421 |
Cites_doi | 10.1093/bioinformatics/btr330 10.1093/bioinformatics/bts444 10.1146/annurev.an.20.100191.002445 10.1021/acs.jafc.8b03569 10.1146/annurev-arplant-042817-040240 10.1101/gr.237511.118 10.1093/molbev/mst211 10.1038/nplants.2016.150 10.1371/journal.pgen.1006976 10.1105/tpc.105.038430 10.1093/chemse/bjq132 10.1126/science.1227721 10.7554/eLife.15266 10.2307/3808656 10.1534/genetics.111.131169 10.1126/science.aat1577 10.2307/3800369 10.1021/jf304198k 10.1093/ajcn/72.6.1424 10.1021/jf60231a015 10.1007/s00122-007-0663-5 10.1016/j.phytochem.2004.04.001 10.1038/ncomms3320 10.1126/sciadv.1400218 10.1073/pnas.1201700109 10.1073/pnas.1509229112 10.1038/ng.3596 10.1146/annurev-nutr-080508-141048 10.1126/science.aal1988 10.1038/nrg3605 10.1534/g3.113.008417 10.1093/gbe/evq027 10.1186/s12870-017-1064-9 10.1002/jsfa.3634 10.1038/ng.2281 10.1534/genetics.116.187369 10.1105/tpc.12.10.1863 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Dec 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Dec 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1038/s41477-019-0563-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
EndPage | 1236 |
ExternalDocumentID | 31792396 10_1038_s41477_019_0563_0 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GrantInformation_xml | – fundername: NSF | BIO | Division of Integrative Organismal Systems (IOS) grantid: 1238142 funderid: https://doi.org/10.13039/100000154 – fundername: United States Department of Agriculture | National Institute of Food and Agriculture (NIFA) grantid: 2017-67007-25942; 2011-67009-30614; 2017-67007-25942 funderid: https://doi.org/10.13039/100005825 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31871695 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AENEX AEUYN AFKRA AFSHS AFWHJ AGAYW AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7SN C1K DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c438t-fa13e90b6b40261a63122e287aebc1fe86f55f702ecd812d019204435df88ef03 |
IEDL.DBID | BENPR |
ISSN | 2055-0278 |
IngestDate | Thu Sep 04 19:41:25 EDT 2025 Wed Jul 16 16:01:54 EDT 2025 Mon Jul 21 05:46:50 EDT 2025 Tue Jul 01 03:33:57 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Fri Feb 21 02:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-fa13e90b6b40261a63122e287aebc1fe86f55f702ecd812d019204435df88ef03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8678-8094 0000-0002-1194-319X 0000-0001-9093-9123 0000-0002-4252-6911 0000-0002-5892-0251 0000-0001-5326-3099 |
PMID | 31792396 |
PQID | 2323074291 |
PQPubID | 2069614 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2320871518 proquest_journals_2323074291 pubmed_primary_31792396 crossref_primary_10_1038_s41477_019_0563_0 crossref_citationtrail_10_1038_s41477_019_0563_0 springer_journals_10_1038_s41477_019_0563_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Smith, C. W. & Frederiksen, R. A. Sorghum: Origin, History, Technology, and Production (John Wiley & Sons, 2000). DrewnowskiAGomez-CarnerosCBitter taste, phytonutrients, and the consumer: a reviewAm. J. Clin. Nutr200072142414351:CAS:528:DC%2BD3cXosl2msbY%3D10.1093/ajcn/72.6.142411101467 HayesJEAllelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adultsChem. Senses2011363113191:CAS:528:DC%2BC3MXitlarurw%3D10.1093/chemse/bjq13221163912 AwikaJMRooneyLWSorghum phytochemicals and their potential impact on human healthPhytochemistry200465119912211:CAS:528:DC%2BD2cXks12rt7k%3D10.1016/j.phytochem.2004.04.00115184005 Sturkie, P. D. Avian Physiology (Springer Science & Business Media, 2012). Harris, D. R. & Hillman, G. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.C.) 11–26 (Routledge, 1989). MeyerRSPuruggananMDEvolution of crop species: genetics of domestication and diversificationNat. Rev. Genet.2013148408521:CAS:528:DC%2BC3sXhslygs7vL10.1038/nrg360524240513 LipkaAEGAPIT: genome association and prediction integrated toolBioinformatics201228239723991:CAS:528:DC%2BC38XhtlantbrP10.1093/bioinformatics/bts44422796960 LucaFPerryGHDi RienzoAEvolutionary adaptations to dietary changesAnnu. Rev. Nutr.2010302913141:CAS:528:DC%2BC3cXhsVWgsbrL10.1146/annurev-nutr-080508-141048204205254163920 GuXYAssociation between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red riceGenetics2011189151515241:CAS:528:DC%2BC38XltlGit7c%3D10.1534/genetics.111.131169219541643241415 UrenCFine-scale human population structure in southern Africa reflects ecogeographic boundariesGenetics201620430331410.1534/genetics.116.187369274747275012395 SchlebuschCMGenomic variation in seven Khoe-San groups reveals adaptation and complex African historyScience20123383743791:CAS:528:DC%2BC38XhsFWisr7P10.1126/science.1227721229971368978294 JacksonFLCSecondary compounds in plants (allelochemicals) as promoters of human biological variabilityAnnu. Rev. Anthropol.19912050554610.1146/annurev.an.20.100191.002445 DykesLRooneyLWPhenolic compounds in cereal grains and their health benefitsCereal Foods World2007521051111:CAS:528:DC%2BD2sXmtl2it7o%3D SoaresSHuman bitter taste receptors are activated by different classes of polyphenolsJ. Agric. Food Chem.201866881488231:CAS:528:DC%2BC1cXhtl2mur3I10.1021/acs.jafc.8b0356930056706 HuffordMBBerny MierYTJCGeptsPCrop biodiversity: an unfinished magnum opus of natureAnnu. Rev. Plant Biol.2019707277511:CAS:528:DC%2BC1MXosFWisrw%3D10.1146/annurev-arplant-042817-04024031035827 SweeneyMTThomsonMJPfeilBEMcCouchSCaught red-handed: Rc encodes a basic helix–loop–helix protein conditioning red pericarp in ricePlant Cell2006182832941:CAS:528:DC%2BD28Xhs1egu78%3D10.1105/tpc.105.038430163998041356539 KurohaTEthylene–gibberellin signaling underlies adaptation of rice to periodic floodingScience20183611811861:CAS:528:DC%2BC1cXhtlahsbjP10.1126/science.aat157730002253 MaceESWhole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghumNat. Commun.2013410.1038/ncomms332023982223 Wang, S. Windows QTL cartographer v.2.5 (North Carolina State Univ. 2007). LiHRibautJMLiZWangJInclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populationsTheor. Appl. Genet.200811624326010.1007/s00122-007-0663-517985112 YanoKGenome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in riceNat. Genet2016489279341:CAS:528:DC%2BC28XhtVSksbrI10.1038/ng.359627322545 Johns, T. The Origins of Human Diet and Medicine: Chemical Ecology (Univ. Arizona Press, 1996). BusbyGBAdmixture into and within sub-Saharan AfricaeLife20165e1526610.7554/eLife.15266273248364915815 LiXLiXFridmanETessoTTYuJDissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosisProc. Natl Acad. Sci. USA201511211823118281:CAS:528:DC%2BC2MXhsVGls7rP10.1073/pnas.1509229112263516844586871 GelliMValidation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghumBMC Plant Biol20171710.1186/s12870-017-1064-9286977835505042 BurrFAThe maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicingPlant Cell19968124912591:CAS:528:DyaK28XltlKjtr8%3D8776895161237 BullardRWGarrisonMVKilburnSRYorkJOLaboratory comparisons of polyphenols and their repellent characteristics in bird-resistant sorghum grainsJ. Agric. Food Chem.198028100610111:CAS:528:DyaL3cXlsVKhurk%3D10.1021/jf60231a0157462507 Gepts, P. in Plant Breeding Rev. Vol. 24 (ed. Janick, J.) 1–44 (John Wiley & Sons, 2004).. Bullard, R. & Elias, D. (ed. Hulse, J.) Sorghum polyphenols and bird resistance. In Polyphenols in Cereals and Legumes: Proc. Symposium (IDRC, 1979). PatinEDispersals and genetic adaptation of Bantu-speaking populations in Africa and North AmericaScience20173565435461:CAS:528:DC%2BC2sXmvVGnsLg%3D10.1126/science.aal198828473590 Willis, R. J. The History of Allelopathy (Springer Science & Business Media, 2007). SoaresSDifferent phenolic compounds activate distinct human bitter taste receptorsJ. Agric. Food Chem.201361152515331:CAS:528:DC%2BC3sXmvVGhsQ%3D%3D10.1021/jf304198k23311874 WuYPresence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1Proc. Natl Acad. Sci. USA201210910281102861:CAS:528:DC%2BC38XhtFWgt73J10.1073/pnas.1201700109226995093387071 DavisJKEvolution of a bitter taste receptor gene cluster in a New World sparrowGenome Biol. Evol.2010235837010.1093/gbe/evq027206247402942037 CampbellMCOrigin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in AfricaMol. Biol. Evol.2014312883021:CAS:528:DC%2BC2cXhtlals7c%3D10.1093/molbev/mst21124177185 HollfelderNNortheast African genomic variation shaped by the continuity of indigenous groups and Eurasian migrationsPLoS Genet201713e100697610.1371/journal.pgen.1006976288376555587336 YuXGenomic prediction contributing to a promising global strategy to turbocharge gene banksNat. Plants20162161501:CAS:528:DC%2BC28Xhs1eiurjK10.1038/nplants.2016.15027694945 MorrisGPDissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traitsG3 (Bethesda)201332085209410.1534/g3.113.008417 ManikowskiSDacamarasmeetsMEstimating bird damage to sorghum and millet in ChadJ .Wildlife Manage.19794354054410.2307/3800369 ShefteNBruggersRSchaferERepellency and toxicity of three bird control chemicals to four species of African grain-eating birdsJ. Wildlife Manage.19824645345710.2307/3808656 Kobue‐LekalakeRITaylorJRde KockHLInfluence of PROP taster status on the consumer acceptability of food made from tannin sorghumsJ. Sci. Food Agric.2009891809181410.1002/jsfa.3634 Council, N. R. Lost Crops of Africa Vol. 1 (National Academies Press, 1996). GuoHGene duplication and genetic innovation in cereal genomesGenome Res.2019292612691:CAS:528:DC%2BC1MXjvFWntr0%3D10.1101/gr.237511.118306512796360818 MofokengMShargieNBird damage and control strategies in grain sorghum producitonInt. J. Agric. Environ. Res.20162264269 LinZParallel domestication of the Shattering1 genes in cerealsNat. Genet2012447207241:CAS:528:DC%2BC38XmvFersbs%3D10.1038/ng.2281225812313532051 DanecekPThe variant call format and VCFtoolsBioinformatics201127215621581:CAS:528:DC%2BC3MXptFCqt7w%3D10.1093/bioinformatics/btr330216535223137218 LaskyJRGenome–environment associations in sorghum landraces predict adaptive traitsSci. Adv.20151e140021810.1126/sciadv.1400218266012064646766 NesiNThe TT8 gene encodes a basic helix–loop–helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliquesPlant Cell200012186318781:CAS:528:DC%2BD3cXotFaisLw%3D10.1105/tpc.12.10.186311041882149125 ES Mace (563_CR28) 2013; 4 FA Burr (563_CR17) 1996; 8 563_CR40 GP Morris (563_CR43) 2013; 3 M Mofokeng (563_CR26) 2016; 2 S Soares (563_CR33) 2013; 61 XY Gu (563_CR36) 2011; 189 563_CR38 H Li (563_CR41) 2008; 116 E Patin (563_CR47) 2017; 356 MT Sweeney (563_CR16) 2006; 18 X Yu (563_CR18) 2016; 2 K Yano (563_CR19) 2016; 48 C Uren (563_CR46) 2016; 204 563_CR13 N Nesi (563_CR15) 2000; 12 RW Bullard (563_CR27) 1980; 28 RS Meyer (563_CR5) 2013; 14 MC Campbell (563_CR31) 2014; 31 L Dykes (563_CR6) 2007; 52 AE Lipka (563_CR42) 2012; 28 CM Schlebusch (563_CR48) 2012; 338 M Gelli (563_CR39) 2017; 17 X Li (563_CR11) 2015; 112 GB Busby (563_CR49) 2016; 5 563_CR23 P Danecek (563_CR44) 2011; 27 JR Lasky (563_CR21) 2015; 1 563_CR25 FLC Jackson (563_CR7) 1991; 20 563_CR8 563_CR9 Z Lin (563_CR20) 2012; 44 F Luca (563_CR4) 2010; 30 563_CR2 MB Hufford (563_CR37) 2019; 70 N Hollfelder (563_CR45) 2017; 13 563_CR1 RI Kobue‐Lekalake (563_CR32) 2009; 89 JM Awika (563_CR12) 2004; 65 A Drewnowski (563_CR3) 2000; 72 Y Wu (563_CR10) 2012; 109 JE Hayes (563_CR35) 2011; 36 N Shefte (563_CR22) 1982; 46 T Kuroha (563_CR30) 2018; 361 JK Davis (563_CR14) 2010; 2 H Guo (563_CR29) 2019; 29 S Manikowski (563_CR24) 1979; 43 S Soares (563_CR34) 2018; 66 |
References_xml | – reference: GelliMValidation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghumBMC Plant Biol20171710.1186/s12870-017-1064-9286977835505042 – reference: DanecekPThe variant call format and VCFtoolsBioinformatics201127215621581:CAS:528:DC%2BC3MXptFCqt7w%3D10.1093/bioinformatics/btr330216535223137218 – reference: SoaresSDifferent phenolic compounds activate distinct human bitter taste receptorsJ. Agric. Food Chem.201361152515331:CAS:528:DC%2BC3sXmvVGhsQ%3D%3D10.1021/jf304198k23311874 – reference: SchlebuschCMGenomic variation in seven Khoe-San groups reveals adaptation and complex African historyScience20123383743791:CAS:528:DC%2BC38XhsFWisr7P10.1126/science.1227721229971368978294 – reference: PatinEDispersals and genetic adaptation of Bantu-speaking populations in Africa and North AmericaScience20173565435461:CAS:528:DC%2BC2sXmvVGnsLg%3D10.1126/science.aal198828473590 – reference: BusbyGBAdmixture into and within sub-Saharan AfricaeLife20165e1526610.7554/eLife.15266273248364915815 – reference: Bullard, R. & Elias, D. (ed. Hulse, J.) Sorghum polyphenols and bird resistance. In Polyphenols in Cereals and Legumes: Proc. Symposium (IDRC, 1979). – reference: WuYPresence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1Proc. Natl Acad. Sci. USA201210910281102861:CAS:528:DC%2BC38XhtFWgt73J10.1073/pnas.1201700109226995093387071 – reference: SweeneyMTThomsonMJPfeilBEMcCouchSCaught red-handed: Rc encodes a basic helix–loop–helix protein conditioning red pericarp in ricePlant Cell2006182832941:CAS:528:DC%2BD28Xhs1egu78%3D10.1105/tpc.105.038430163998041356539 – reference: YuXGenomic prediction contributing to a promising global strategy to turbocharge gene banksNat. Plants20162161501:CAS:528:DC%2BC28Xhs1eiurjK10.1038/nplants.2016.15027694945 – reference: HollfelderNNortheast African genomic variation shaped by the continuity of indigenous groups and Eurasian migrationsPLoS Genet201713e100697610.1371/journal.pgen.1006976288376555587336 – reference: LucaFPerryGHDi RienzoAEvolutionary adaptations to dietary changesAnnu. Rev. Nutr.2010302913141:CAS:528:DC%2BC3cXhsVWgsbrL10.1146/annurev-nutr-080508-141048204205254163920 – reference: YanoKGenome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in riceNat. Genet2016489279341:CAS:528:DC%2BC28XhtVSksbrI10.1038/ng.359627322545 – reference: LiHRibautJMLiZWangJInclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populationsTheor. Appl. Genet.200811624326010.1007/s00122-007-0663-517985112 – reference: HayesJEAllelic variation in TAS2R bitter receptor genes associates with variation in sensations from and ingestive behaviors toward common bitter beverages in adultsChem. Senses2011363113191:CAS:528:DC%2BC3MXitlarurw%3D10.1093/chemse/bjq13221163912 – reference: MorrisGPDissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traitsG3 (Bethesda)201332085209410.1534/g3.113.008417 – reference: Harris, D. R. & Hillman, G. in Foraging and Farming: The Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.C.) 11–26 (Routledge, 1989). – reference: DrewnowskiAGomez-CarnerosCBitter taste, phytonutrients, and the consumer: a reviewAm. J. Clin. Nutr200072142414351:CAS:528:DC%2BD3cXosl2msbY%3D10.1093/ajcn/72.6.142411101467 – reference: CampbellMCOrigin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in AfricaMol. Biol. Evol.2014312883021:CAS:528:DC%2BC2cXhtlals7c%3D10.1093/molbev/mst21124177185 – reference: GuoHGene duplication and genetic innovation in cereal genomesGenome Res.2019292612691:CAS:528:DC%2BC1MXjvFWntr0%3D10.1101/gr.237511.118306512796360818 – reference: Wang, S. Windows QTL cartographer v.2.5 (North Carolina State Univ. 2007). – reference: ManikowskiSDacamarasmeetsMEstimating bird damage to sorghum and millet in ChadJ .Wildlife Manage.19794354054410.2307/3800369 – reference: MeyerRSPuruggananMDEvolution of crop species: genetics of domestication and diversificationNat. Rev. Genet.2013148408521:CAS:528:DC%2BC3sXhslygs7vL10.1038/nrg360524240513 – reference: MofokengMShargieNBird damage and control strategies in grain sorghum producitonInt. J. Agric. Environ. Res.20162264269 – reference: SoaresSHuman bitter taste receptors are activated by different classes of polyphenolsJ. Agric. Food Chem.201866881488231:CAS:528:DC%2BC1cXhtl2mur3I10.1021/acs.jafc.8b0356930056706 – reference: Council, N. R. Lost Crops of Africa Vol. 1 (National Academies Press, 1996). – reference: HuffordMBBerny MierYTJCGeptsPCrop biodiversity: an unfinished magnum opus of natureAnnu. Rev. Plant Biol.2019707277511:CAS:528:DC%2BC1MXosFWisrw%3D10.1146/annurev-arplant-042817-04024031035827 – reference: LaskyJRGenome–environment associations in sorghum landraces predict adaptive traitsSci. Adv.20151e140021810.1126/sciadv.1400218266012064646766 – reference: ShefteNBruggersRSchaferERepellency and toxicity of three bird control chemicals to four species of African grain-eating birdsJ. Wildlife Manage.19824645345710.2307/3808656 – reference: BurrFAThe maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicingPlant Cell19968124912591:CAS:528:DyaK28XltlKjtr8%3D8776895161237 – reference: LinZParallel domestication of the Shattering1 genes in cerealsNat. Genet2012447207241:CAS:528:DC%2BC38XmvFersbs%3D10.1038/ng.2281225812313532051 – reference: BullardRWGarrisonMVKilburnSRYorkJOLaboratory comparisons of polyphenols and their repellent characteristics in bird-resistant sorghum grainsJ. Agric. Food Chem.198028100610111:CAS:528:DyaL3cXlsVKhurk%3D10.1021/jf60231a0157462507 – reference: KurohaTEthylene–gibberellin signaling underlies adaptation of rice to periodic floodingScience20183611811861:CAS:528:DC%2BC1cXhtlahsbjP10.1126/science.aat157730002253 – reference: AwikaJMRooneyLWSorghum phytochemicals and their potential impact on human healthPhytochemistry200465119912211:CAS:528:DC%2BD2cXks12rt7k%3D10.1016/j.phytochem.2004.04.00115184005 – reference: Johns, T. The Origins of Human Diet and Medicine: Chemical Ecology (Univ. Arizona Press, 1996). – reference: Willis, R. J. The History of Allelopathy (Springer Science & Business Media, 2007). – reference: GuXYAssociation between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red riceGenetics2011189151515241:CAS:528:DC%2BC38XltlGit7c%3D10.1534/genetics.111.131169219541643241415 – reference: Smith, C. W. & Frederiksen, R. A. Sorghum: Origin, History, Technology, and Production (John Wiley & Sons, 2000). – reference: NesiNThe TT8 gene encodes a basic helix–loop–helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliquesPlant Cell200012186318781:CAS:528:DC%2BD3cXotFaisLw%3D10.1105/tpc.12.10.186311041882149125 – reference: JacksonFLCSecondary compounds in plants (allelochemicals) as promoters of human biological variabilityAnnu. Rev. Anthropol.19912050554610.1146/annurev.an.20.100191.002445 – reference: LiXLiXFridmanETessoTTYuJDissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosisProc. Natl Acad. Sci. USA201511211823118281:CAS:528:DC%2BC2MXhsVGls7rP10.1073/pnas.1509229112263516844586871 – reference: DavisJKEvolution of a bitter taste receptor gene cluster in a New World sparrowGenome Biol. Evol.2010235837010.1093/gbe/evq027206247402942037 – reference: MaceESWhole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghumNat. Commun.2013410.1038/ncomms332023982223 – reference: Gepts, P. in Plant Breeding Rev. Vol. 24 (ed. Janick, J.) 1–44 (John Wiley & Sons, 2004).. – reference: LipkaAEGAPIT: genome association and prediction integrated toolBioinformatics201228239723991:CAS:528:DC%2BC38XhtlantbrP10.1093/bioinformatics/bts44422796960 – reference: Kobue‐LekalakeRITaylorJRde KockHLInfluence of PROP taster status on the consumer acceptability of food made from tannin sorghumsJ. Sci. Food Agric.2009891809181410.1002/jsfa.3634 – reference: DykesLRooneyLWPhenolic compounds in cereal grains and their health benefitsCereal Foods World2007521051111:CAS:528:DC%2BD2sXmtl2it7o%3D – reference: Sturkie, P. D. Avian Physiology (Springer Science & Business Media, 2012). – reference: UrenCFine-scale human population structure in southern Africa reflects ecogeographic boundariesGenetics201620430331410.1534/genetics.116.187369274747275012395 – ident: 563_CR1 – volume: 27 start-page: 2156 year: 2011 ident: 563_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – volume: 28 start-page: 2397 year: 2012 ident: 563_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts444 – volume: 20 start-page: 505 year: 1991 ident: 563_CR7 publication-title: Annu. Rev. Anthropol. doi: 10.1146/annurev.an.20.100191.002445 – volume: 66 start-page: 8814 year: 2018 ident: 563_CR34 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b03569 – volume: 70 start-page: 727 year: 2019 ident: 563_CR37 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040240 – volume: 29 start-page: 261 year: 2019 ident: 563_CR29 publication-title: Genome Res. doi: 10.1101/gr.237511.118 – ident: 563_CR8 – volume: 31 start-page: 288 year: 2014 ident: 563_CR31 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst211 – volume: 2 start-page: 16150 year: 2016 ident: 563_CR18 publication-title: Nat. Plants doi: 10.1038/nplants.2016.150 – volume: 13 start-page: e1006976 year: 2017 ident: 563_CR45 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006976 – volume: 2 start-page: 264 year: 2016 ident: 563_CR26 publication-title: Int. J. Agric. Environ. Res. – volume: 18 start-page: 283 year: 2006 ident: 563_CR16 publication-title: Plant Cell doi: 10.1105/tpc.105.038430 – volume: 36 start-page: 311 year: 2011 ident: 563_CR35 publication-title: Chem. Senses doi: 10.1093/chemse/bjq132 – volume: 338 start-page: 374 year: 2012 ident: 563_CR48 publication-title: Science doi: 10.1126/science.1227721 – volume: 5 start-page: e15266 year: 2016 ident: 563_CR49 publication-title: eLife doi: 10.7554/eLife.15266 – volume: 46 start-page: 453 year: 1982 ident: 563_CR22 publication-title: J. Wildlife Manage. doi: 10.2307/3808656 – ident: 563_CR25 – volume: 189 start-page: 1515 year: 2011 ident: 563_CR36 publication-title: Genetics doi: 10.1534/genetics.111.131169 – volume: 361 start-page: 181 year: 2018 ident: 563_CR30 publication-title: Science doi: 10.1126/science.aat1577 – volume: 52 start-page: 105 year: 2007 ident: 563_CR6 publication-title: Cereal Foods World – volume: 43 start-page: 540 year: 1979 ident: 563_CR24 publication-title: J .Wildlife Manage. doi: 10.2307/3800369 – volume: 61 start-page: 1525 year: 2013 ident: 563_CR33 publication-title: J. Agric. Food Chem. doi: 10.1021/jf304198k – volume: 72 start-page: 1424 year: 2000 ident: 563_CR3 publication-title: Am. J. Clin. Nutr doi: 10.1093/ajcn/72.6.1424 – volume: 28 start-page: 1006 year: 1980 ident: 563_CR27 publication-title: J. Agric. Food Chem. doi: 10.1021/jf60231a015 – volume: 116 start-page: 243 year: 2008 ident: 563_CR41 publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-007-0663-5 – volume: 65 start-page: 1199 year: 2004 ident: 563_CR12 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2004.04.001 – volume: 4 year: 2013 ident: 563_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms3320 – volume: 1 start-page: e1400218 year: 2015 ident: 563_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.1400218 – volume: 109 start-page: 10281 year: 2012 ident: 563_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1201700109 – volume: 112 start-page: 11823 year: 2015 ident: 563_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1509229112 – volume: 48 start-page: 927 year: 2016 ident: 563_CR19 publication-title: Nat. Genet doi: 10.1038/ng.3596 – volume: 30 start-page: 291 year: 2010 ident: 563_CR4 publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-080508-141048 – ident: 563_CR2 – ident: 563_CR40 – ident: 563_CR13 – ident: 563_CR38 – volume: 356 start-page: 543 year: 2017 ident: 563_CR47 publication-title: Science doi: 10.1126/science.aal1988 – ident: 563_CR23 – volume: 14 start-page: 840 year: 2013 ident: 563_CR5 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3605 – volume: 3 start-page: 2085 year: 2013 ident: 563_CR43 publication-title: G3 (Bethesda) doi: 10.1534/g3.113.008417 – volume: 2 start-page: 358 year: 2010 ident: 563_CR14 publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evq027 – volume: 17 year: 2017 ident: 563_CR39 publication-title: BMC Plant Biol doi: 10.1186/s12870-017-1064-9 – volume: 89 start-page: 1809 year: 2009 ident: 563_CR32 publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3634 – volume: 44 start-page: 720 year: 2012 ident: 563_CR20 publication-title: Nat. Genet doi: 10.1038/ng.2281 – volume: 204 start-page: 303 year: 2016 ident: 563_CR46 publication-title: Genetics doi: 10.1534/genetics.116.187369 – volume: 12 start-page: 1863 year: 2000 ident: 563_CR15 publication-title: Plant Cell doi: 10.1105/tpc.12.10.1863 – ident: 563_CR9 – volume: 8 start-page: 1249 year: 1996 ident: 563_CR17 publication-title: Plant Cell |
SSID | ssj0001755360 |
Score | 2.392266 |
Snippet | Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter... Tannins in grains prevent sparrow consumption but cause bitterness for people with sensitive taste. A study uncovered genes controlling tannin presence in... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1229 |
SubjectTerms | 45/23 45/43 45/77 631/181 631/208 631/449 Africa Agricultural ecosystems Alkadienes Animals Biomedical and Life Sciences Feeding Behavior Humans Life Sciences Pheromones - analysis Pheromones - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Selection, Genetic Sorghum Sorghum - chemistry Sorghum - genetics Sorghum - metabolism Sorghum - parasitology Sparrows - physiology Tannins Tannins - analysis Tannins - metabolism Taste |
Title | Allelochemicals targeted to balance competing selections in African agroecosystems |
URI | https://link.springer.com/article/10.1038/s41477-019-0563-0 https://www.ncbi.nlm.nih.gov/pubmed/31792396 https://www.proquest.com/docview/2323074291 https://www.proquest.com/docview/2320871518 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB70rg--SLWtRk_ZQp9agptskts8lKKiSKFHkQq-hf0pwpGc5nzwv3dmk9xRRJ-z2V12Zne-2ZmdD-BbbrLCCcqeEVN0UErcUrJUKja5Iv43W6Se3g7_mRVXN9nv2_x2A2bDWxhKqxzOxHBQ28bQHfkJWn5BflyZ_Fo8xMQaRdHVgUJD9dQK9mcoMbYJYzyScz6C8dnF7O_1-tZlmueiWIU3hTxpsySbUvZlGSMWEDH_30C9Qp2vIqbBEF1-hO0eQbLTTuQ7sOHqXfhw1iDKe_4E16fzuZsTDVaoA9CyLtXbWbZsmKY8RuOYCWAZe2dtoMEh1WP3NetIg2qm7h4bdEu7Ks_tZ7i5vPh3fhX3vAmxyYRcxl4lwpVcFzojD0sVIklTh66Rctok3snC57mf8tQZi_bdEsrjGeIm66V0nosvMKqb2u0DS5wutcbPHoGVz4xGd0VJxa30MrWpjIAPi1WZvqg4cVvMqxDcFrLq1rfCMSpa34pH8H31y6KrqPFe48kggarfXG21VoUIvq4-47agWIeqXfMU2nD0BVEXItjrJLcaDSETwtqyiODHIMp1529O5eD9qRzCVkpKFDJdJjBaPj65I8QrS33cK-ELg5PmRg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VLRJcEN8EChgJLqCoSexknUOFWmi1pe0KVa3Um2s7Nqq0StpmK9Q_x29jxkl2hSp66zmObY3Hnjee8TyAj7kVheOUPcPH6KCUuKVkqXVsc038b1WReXo7fDAtJsfix0l-sgJ_hrcwlFY5nInhoK4aS3fk62j5OflxZfr1_CIm1iiKrg4UGrqnVqg2Qomx_mHHnrv-jS5cu7H7Hdf7U5btbB99m8Q9y0BsBZfz2OuUuzIxhRHkj-iCp1nm0JHQztjUO1n4PPfjJHO2QmtYESZKBKKMykvpfMKx33uwKugCZQSrW9vTn4fLW55xnvNiEU7lcr0VqRhTtmcZI_bgcfKvQbyBcm9EaIPh23kMj3rEyjY7FXsCK65-Cve3GkSV18_gcHM2czOi3Qp1B1rWpZa7is0bZihv0jpmAzjH3lkbaHdI1dlZzTqSoprpX5cNusFdVen2ORzfiQRfwKhuavcKWOpMaQx-9gjkvLAG3SMtdVJJL7MqkxEkg7CU7YuYE5fGTIVgOpeqk6_CMRTJVyURfF78ct5V8Lit8dqwAqrfzK1aql4EHxafcRtSbEXXrrkKbRL0PVH3InjZrdxiNIRoCKPLIoIvw1IuO__vVF7fPpX38GBydLCv9nene2_gYUYKFbJs1mA0v7xybxErzc27XiEZnN71HvgLJVoiig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allelochemicals+targeted+to+balance+competing+selections+in+African+agroecosystems&rft.jtitle=Nature+plants&rft.au=Wu%2C+Yuye&rft.au=Guo%2C+Tingting&rft.au=Mu%2C+Qi&rft.au=Wang%2C+Jinyu&rft.date=2019-12-01&rft.issn=2055-0278&rft.eissn=2055-0278&rft.volume=5&rft.issue=12&rft.spage=1229&rft.epage=1236&rft_id=info:doi/10.1038%2Fs41477-019-0563-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41477_019_0563_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |