Allelochemicals targeted to balance competing selections in African agroecosystems
Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate re...
Saved in:
Published in | Nature plants Vol. 5; no. 12; pp. 1229 - 1236 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2055-0278 2055-0278 |
DOI | 10.1038/s41477-019-0563-0 |
Cover
Summary: | Among major cereals domesticated as staple food, only sorghum has a high proportion of cultivars with condensed tannins in grain, which can trigger bitter taste perception in animals by binding to type 2 taste receptors (TAS2Rs). Here, we report the completion of uncovering of a pair of duplicate recessive genes (
Tannin1
and
Tannin2
) underlying tannin presence. Three loss-of-function alleles from each gene were identified in non-tannin sorghum desired as palatable food. Condensed tannins effectively prevented sparrows from consuming sorghum grain. Parallel geographic distributions between tannin sorghum and
Quelea quelea
supported the role of tannins in fighting against this major herbivore threat. Association between geographic distributions of human TAS2R variants and tannin sorghum across Africa suggested that different causes had probably driven this bidirectional selection according to varied local herbivore threats and human taste sensitivity. Our investigation uncovered coevolution among humans, plants and environments linked by allelochemicals.
Tannins in grains prevent sparrow consumption but cause bitterness for people with sensitive taste. A study uncovered genes controlling tannin presence in sorghum and revealed a coevolution among humans, sorghums and birds linked by tannins in African agroecosystems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2055-0278 2055-0278 |
DOI: | 10.1038/s41477-019-0563-0 |