Deep learning-driven brain tumor classification and segmentation using non-contrast MRI
This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contra...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 27831 - 24 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
30.07.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-13591-2 |
Cover
| Abstract | This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice. |
|---|---|
| AbstractList | Abstract This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice. This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice. This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice.This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice. |
| ArticleNumber | 27831 |
| Author | Lu, Nan-Han Liu, Kuo-Ying Huang, Yung-Hui Chen, Tai-Been |
| Author_xml | – sequence: 1 givenname: Nan-Han surname: Lu fullname: Lu, Nan-Han email: leunanhan@seed.net.tw organization: Department of Radiology, E-DA Cancer Hospital, I-Shou University, School of Medicine, College of Medicine, I-Shou University – sequence: 2 givenname: Yung-Hui surname: Huang fullname: Huang, Yung-Hui organization: Department of Medical Imaging and Radiological Science, I-Shou University – sequence: 3 givenname: Kuo-Ying surname: Liu fullname: Liu, Kuo-Ying organization: Department of Radiology, E-DA Cancer Hospital, I-Shou University – sequence: 4 givenname: Tai-Been surname: Chen fullname: Chen, Tai-Been email: ztbchen@outlook.com organization: Department of Radiological Technology, Teikyo University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40745383$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1UREvpH-CAInHhEvBnHB9R-VqpCAmBOFoTZ7LyKrEXOynqv8e7WQrigPDF1uh535l5_ZichRiQkKeMvmRUtK-yZMq0NeWqZkIZVvMH5IJTqWouOD_7431OrnLe0XIUN5KZR-RcUi2VaMUF-fYGcV-NCCn4sK375G8xVF0CH6p5mWKq3Ag5-8E7mH0MFYS-yridMMxrYclFWJXpahfDnCDP1cfPmyfk4QBjxqvTfUm-vnv75fpDffPp_eb69U3tpGjneqBDjw1qZ7R20gguOqobJ2gPUhgNgEwJBq3oVA8dCNTYCucUcMVM41pxSTarbx9hZ_fJT5DubARvj4WYthbS7N2Ituk0GGygY8BkJ9A0gxt65qg7NOlY8RKr1xL2cPcDxvHekFF7SN2uqduSuj2mbnlRvVhV-xS_L5hnO_nscBwhYFyyLTuVqI0UuqDP_0J3cUmh5HOkOJNGHlZ6dqKWbsL-foZfn1YAvgIuxZwTDv835mm5XOCwxfS79z9UPwEddblZ |
| Cites_doi | 10.1109/TETCI.2024.3444590 10.3171/2023.5.FOCUS23212 10.1038/s41572-018-0055-y 10.1007/s00330-023-09420-7 10.1186/s12911-023-02114-6 10.1016/j.asoc.2024.112139 10.1016/j.media.2024.103270 10.1007/s11060-023-04482-5 10.1038/s41598-024-74577-0 10.1016/j.compmedimag.2023.102313 10.1109/RBME.2022.3185292 10.1007/s10548-023-00953-0 10.3390/diagnostics13071229 10.2174/1573409920666230816090626 10.37349/etat.2023.00159 10.1016/j.cmpb.2017.01.003 10.3390/diagnostics13122050 10.1007/s11704-016-5129-y 10.1109/JBHI.2023.3266614 10.1093/neuonc/noac166 10.1007/s13721-023-00437-y 10.1371/journal.pone.0291200 10.1002/hbm.26469 10.3390/jimaging9080163 10.1038/s41467-023-41195-9 10.3390/diagnostics13122094 10.1109/JTEHM.2022.3219625 10.1038/s41598-023-50505-6 10.1016/j.wneu.2023.03.115 10.1007/978-3-030-27272-2_14 10.1002/jmri.28695 10.1016/j.ijrobp.2022.09.068 10.1088/1361-6560/acf10d 10.31557/APJCP.2023.24.6.2141 10.1016/j.compbiomed.2023.106966 10.1080/0954898X.2023.2275045 10.4103/0028-3886.383858 10.3389/fonc.2023.1048841 10.3390/diagnostics13030481 10.1109/JBHI.2024.3375894 10.1109/ISBI56570.2024.10635611 10.3390/diagnostics13071320 10.1016/j.crad.2022.08.127 10.3390/diagnostics12102541 10.1038/s41598-024-71250-4 10.3390/cancers15082253 10.1007/s11042-024-18947-w |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-13591-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (Proquest) Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_6b7a9e6ab1a14b3e96fcfd1c0ce153b1 10.1038/s41598-025-13591-2 40745383 10_1038_s41598_025_13591_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: EDA Hospital, Taiwan grantid: EDCHP113010 – fundername: National Science and Technology Council in Taiwan grantid: NSTC 113-2221-E-214-007 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PUEGO AARCD ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c438t-f0fde6e7c977c49323b076c30da4397aae1531a83b5daba3e7e83cc5a25196c83 |
| IEDL.DBID | BENPR |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:48 EDT 2025 Sun Oct 26 04:16:34 EDT 2025 Fri Sep 05 15:28:37 EDT 2025 Tue Oct 07 07:46:16 EDT 2025 Mon Aug 04 01:31:01 EDT 2025 Wed Oct 01 05:41:52 EDT 2025 Sun Aug 17 01:18:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Fully convolutional networks (FCNs) Convolutional neural networks (CNNs) Brain MRI Artificial intelligence Tumor segmentation Tumor classification |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c438t-f0fde6e7c977c49323b076c30da4397aae1531a83b5daba3e7e83cc5a25196c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3235214948?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 40745383 |
| PQID | 3235214948 |
| PQPubID | 2041939 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6b7a9e6ab1a14b3e96fcfd1c0ce153b1 unpaywall_primary_10_1038_s41598_025_13591_2 proquest_miscellaneous_3235389437 proquest_journals_3235214948 pubmed_primary_40745383 crossref_primary_10_1038_s41598_025_13591_2 springer_journals_10_1038_s41598_025_13591_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-30 |
| PublicationDateYYYYMMDD | 2025-07-30 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 13591_CR29 13591_CR27 13591_CR28 S Roy (13591_CR14) 2017; 140 13591_CR21 13591_CR43 13591_CR22 13591_CR44 13591_CR41 13591_CR20 13591_CR42 13591_CR1 13591_CR25 13591_CR47 13591_CR2 S Roy (13591_CR15) 2019 13591_CR26 13591_CR48 13591_CR23 13591_CR45 13591_CR24 13591_CR46 S Raju (13591_CR36) 2023; 34 13591_CR3 13591_CR4 S Roy (13591_CR30) 2024; 83 13591_CR7 13591_CR8 13591_CR18 13591_CR19 13591_CR16 13591_CR38 13591_CR17 13591_CR39 TA Soomro (13591_CR5) 2023; 16 13591_CR32 S Rohilla (13591_CR9) 2023 13591_CR11 13591_CR33 13591_CR37 13591_CR12 13591_CR34 13591_CR13 13591_CR35 S Roy (13591_CR10) 2017; 11 13591_CR40 DK Sahoo (13591_CR6) 2023; 71 A Kabiraj (13591_CR31) 2024; 166 |
| References_xml | – ident: 13591_CR47 doi: 10.1109/TETCI.2024.3444590 – ident: 13591_CR45 doi: 10.3171/2023.5.FOCUS23212 – ident: 13591_CR46 doi: 10.1038/s41572-018-0055-y – ident: 13591_CR18 doi: 10.1007/s00330-023-09420-7 – ident: 13591_CR19 doi: 10.1186/s12911-023-02114-6 – volume: 166 start-page: 112139 year: 2024 ident: 13591_CR31 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112139 – ident: 13591_CR3 doi: 10.1016/j.media.2024.103270 – ident: 13591_CR44 doi: 10.1007/s11060-023-04482-5 – ident: 13591_CR1 doi: 10.1038/s41598-024-74577-0 – ident: 13591_CR4 doi: 10.1016/j.compmedimag.2023.102313 – volume: 16 start-page: 70 year: 2023 ident: 13591_CR5 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2022.3185292 – ident: 13591_CR32 doi: 10.1007/s10548-023-00953-0 – ident: 13591_CR28 doi: 10.3390/diagnostics13071229 – year: 2023 ident: 13591_CR9 publication-title: Curr. Comput. Aided Drug Des. Aug doi: 10.2174/1573409920666230816090626 – ident: 13591_CR13 doi: 10.37349/etat.2023.00159 – volume: 140 start-page: 307 year: 2017 ident: 13591_CR14 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.01.003 – ident: 13591_CR24 doi: 10.3390/diagnostics13122050 – volume: 11 start-page: 717 issue: 4 year: 2017 ident: 13591_CR10 publication-title: Front. Comput. Sci. doi: 10.1007/s11704-016-5129-y – ident: 13591_CR23 doi: 10.1109/JBHI.2023.3266614 – ident: 13591_CR33 doi: 10.1093/neuonc/noac166 – ident: 13591_CR43 doi: 10.1007/s13721-023-00437-y – ident: 13591_CR12 doi: 10.1371/journal.pone.0291200 – ident: 13591_CR20 doi: 10.1002/hbm.26469 – ident: 13591_CR27 doi: 10.3390/jimaging9080163 – ident: 13591_CR41 doi: 10.1038/s41467-023-41195-9 – ident: 13591_CR11 doi: 10.3390/diagnostics13122094 – ident: 13591_CR42 doi: 10.1109/JTEHM.2022.3219625 – ident: 13591_CR7 doi: 10.1038/s41598-023-50505-6 – ident: 13591_CR21 doi: 10.1016/j.wneu.2023.03.115 – start-page: 125 volume-title: Image Analysis and Recognition. ICIAR 2019 year: 2019 ident: 13591_CR15 doi: 10.1007/978-3-030-27272-2_14 – ident: 13591_CR26 doi: 10.1002/jmri.28695 – ident: 13591_CR22 doi: 10.1016/j.ijrobp.2022.09.068 – ident: 13591_CR35 doi: 10.1088/1361-6560/acf10d – ident: 13591_CR29 doi: 10.31557/APJCP.2023.24.6.2141 – ident: 13591_CR34 doi: 10.1016/j.compbiomed.2023.106966 – volume: 34 start-page: 408 issue: 4 year: 2023 ident: 13591_CR36 publication-title: Network. doi: 10.1080/0954898X.2023.2275045 – volume: 71 start-page: 647 issue: 4 year: 2023 ident: 13591_CR6 publication-title: Jul -Aug doi: 10.4103/0028-3886.383858 – ident: 13591_CR40 doi: 10.3389/fonc.2023.1048841 – ident: 13591_CR38 doi: 10.3390/diagnostics13030481 – ident: 13591_CR37 doi: 10.1016/j.compmedimag.2023.102313 – ident: 13591_CR2 doi: 10.1109/JBHI.2024.3375894 – ident: 13591_CR16 doi: 10.1109/ISBI56570.2024.10635611 – ident: 13591_CR25 doi: 10.3390/diagnostics13071320 – ident: 13591_CR39 doi: 10.1016/j.crad.2022.08.127 – ident: 13591_CR17 doi: 10.3390/diagnostics12102541 – ident: 13591_CR48 doi: 10.1038/s41598-024-71250-4 – ident: 13591_CR8 doi: 10.3390/cancers15082253 – volume: 83 start-page: 88039 issue: 62 year: 2024 ident: 13591_CR30 publication-title: Multimed Tools Appl. doi: 10.1007/s11042-024-18947-w |
| SSID | ssj0000529419 |
| Score | 2.456949 |
| Snippet | This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel... Abstract This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 27831 |
| SubjectTerms | 692/4028 692/700/1421/65 Accuracy Adult Aged Artificial intelligence Automation Brain cancer Brain MRI Brain Neoplasms - classification Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Brain research Brain tumors Classification Convolutional neural networks (CNNs) Datasets Deep Learning Efficiency Female Fully convolutional networks (FCNs) Glioma Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Innovations Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Middle Aged multidisciplinary Neural networks Neural Networks, Computer Privacy Science Science (multidisciplinary) Segmentation Tumor classification Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpQo4oPIOFGQkbtSqEzuOfeRVFSQ4ICp6s8ZjZy9tdrWbVdV_X0-SXRYJAQeusZV4ZjzxZ3vmG8Zey6AiahsFsbVRCTMjwCGINukWjTUW4xAg-9WcnunP5_X5Tqkvigkb6YFHxR2b0IBLBkIJpQ4qOdNiG0uUmLKzhmHjI63b2UyNrN6V06WbsmSksservFJRNllVi1LVrhTVLyvRQNj_O5S5c0N6l91edwu4voKLi51F6OSA3ZvQI387jvo-u5W6B2x_rCd5_ZD9-JDSgk-FIGYiLulXxgNVgeD9-nK-5EhgmaKDBoNw6CJfpdnllIDUcQqDn_Fu3okhhh1WPf_y7dMjdnby8fv7UzFVThCole1FK9uYTGowozvUGaKpIBuDSkYgAAJAuivBqlBHCKBSk6xCrIHyWA1a9Zjt5U-lpxT6lCJKwFhBq12I1jUYm4xLona2QVmwNxst-sVIkOGHi21l_ahzn3XuB537qmDvSNHbnkRuPTzIJveTyf3fTF6ww42Z_ORxK59lzEiEyG4K9mrbnH2FLkCgS_P12EcR4XxTsCejebcjyRtbnRtVwY429v758j8JdLSdE_8g_7P_If9zdqeieUwnzPKQ7fXLdXqRoVEfXg5ecAO-vgmH priority: 102 providerName: Directory of Open Access Journals – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6tukLAAfEmsCAjcaMRSe04zrE8VkslOAAr9maNx04vu2nVpkL77_EkadgVCME1fsSeGdufPS-AV5mTnpTxKUdr4xRmOsWKMK2Dqkkbbch3BrKf9cmpWpwVZwcw3fvCXNPfd6G7t_GIYTewWZHmsqjyNG64hyYKppnA4Xy--LoY31RYa6XyavCNic3f_N742vnThen_E7a8ohe9DTd3zRovf-D5-ZWj5_gu3Bkwo5j3TL4HB6G5Dzf6LJKXD-D7-xDWYkj_sEz9hjcw4Tj3g2h3F6uNIIbIbBPUsUFg48U2LC8Gt6NGsPH7UjSrJu0s13Hbik9fPj6E0-MP396dpEO-hJSUNG1aZ7UPOpQUMR2pCMyky0pNMvPIsAMxxO0tRyNd4dGhDGUwkqhA9l7VZOQjmMRfhSds8BQ8ZUh-hrWqnDdVSb6MaMSrypSUJfB6T0W77sNi2E6dLY3taW4jzW1HcztL4C0TeqzJIa27D5HTdlghVrsSq6DR5ZgrJ0Ola6p9ThnxsF2ewNGeTXZYZ1sb5xjxB4e4SeDlWBxXCKs9sAmrXV9Hcpj5MoHHPXvHkcTrrIqFMoHpnt-_Ov_bhKajTPzD_J_-X-_P4NaMJZZfkLMjmLSbXXgeoU_rXgwS_xPWDfo0 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg48H4ECjISN-o2iRPHOfZBVZCoEGJFOVnjsbMH2uxqkwiVX48nyW5bVKFyjZ3E45mxv8Qz3zD2LrbSYaadILY2KmGmBJQIovJZhUorja4PkD1WR9Ps00l-MtLkUC7MlfN7qXeasMFQEliai0TmZSLCcruh8oC7J2xjevxl9wdVjwu4RARokI5ZMdffeGXn6Qn6r0OVl05E77E7Xb2A819wenpp0zl8MFQvanquQoo1-bndtXYbf__F5HgzeR6y-yP25LuDsTxit3z9mN0eqlGeP2HfD7xf8LGMxEy4JS2E3FINCd52Z_MlR4LaFFvUq5ND7XjjZ2dj-lLNKYh-xut5LfoIeGha_vnrx6dsevjh2_6RGOsuCMykbkUVV84rX2DAhpgFgCdtXCiUsQOCLwA-LJMJaGlzBxakL7yWiDlQFqxCLZ-xSXiVf0GBU95hDOhSqLLSOl0W6IqAalxW6gLjiL1f6cQsBnoN0x-LS22GqTJhqkw_VSaN2B6pbd2TqLH7C2GGzehpRtkCSq_AJpBkVvpSVVi5BGOkYdskYpsrpZvRXxsTZAw4hqhyIvZ23Rw8jY5PoPbzbugjia6-iNjzwVjWIwmfxVlolBHbWlnPxcP_JdDW2sJuIP_L_-v-it1NydDoT3S8ySbtsvOvA4Rq7ZvRd_4AxeIQNw priority: 102 providerName: Unpaywall |
| Title | Deep learning-driven brain tumor classification and segmentation using non-contrast MRI |
| URI | https://link.springer.com/article/10.1038/s41598-025-13591-2 https://www.ncbi.nlm.nih.gov/pubmed/40745383 https://www.proquest.com/docview/3235214948 https://www.proquest.com/docview/3235389437 https://doi.org/10.1038/s41598-025-13591-2 https://doaj.org/article/6b7a9e6ab1a14b3e96fcfd1c0ce153b1 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Open Access资源_DOAJ customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61u0LAAfEmUFZB4katJnFiOweEtkurshKrqrBiOUV-ZS9tsuxDqP8ej_NokVDF1Y4Se2Y8_jJPgPeRokanwhCs1oYtzBiRuZaktGmpmWBCGx8gO2Nn83S6yBZ7MOtyYTCsstOJXlGbWqON_IgmDirEWMzk0-oXwa5R6F3tWmjItrWC-ehLjO3DMMHKWAMYHp_Mzi96qwv6tdI4b7NnIiqONu4GwyyzJCMxzfKYJH_dUL6Q_7_Q5y3P6UO4v6tW8vq3vLy8dTmdPoZHLaoMx40YPIE9Wz2Fe02fyetn8OOztauwbRCxJGaNKi5U2B0i3O6u6nWoEURj1JBnVCgrE27s8qpNTKpCDI9fhlVdER_bLjfb8OvFl-cwPz35PjkjbUcFolMqtqSMSmOZ5dqhPp066EZVxJmmkZEITKS0TgHGUlCVGakktdwKqnUmMb-VaUFfwMB9yr7CkChrdCS1SWSZ5sqInGvDHV4xaS64jgL40FGxWDWFMwrv8KaiaGheOJoXnuZFEsAxErp_Eote-4F6vSzaM1QwxWVumVSxjFNFbc5KXZpYRxqXreIADjo2Fe1J3BQ3chPAu37anSF0jMjK1rvmGYqF6HkALxv29itxP7ypm6QBHHb8vnn5XRs67GXiP_b_-u6lv4EHCUoo2pSjAxhs1zv71oGhrRrBPl_wEQzH4-m36aiVdzc6YZORNzC4sfnsfPzzD1uUDAM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6igyrooepOWtq6UnsqFknsJM4BVaWAZgqMKgQqN-Mtc4HMdBah-XP9bfXLBpUq1AvX2HLst9jPfssH8DHUzBouLMVqbQhhllKVG0ULxwuTilQYWwXIDtP-Gf9-npyvwO82FwbDKts9sdqo7djgG_k2i72pEGExky-TXxRRo9C72kJoqAZawe5UJcaaxI5Dt7z2V7jZzmDP8_tTHB_sn37r0wZlgBrOxJwWYWFd6jLjLSHDvTnDtL_bGxZahYe1Us5vCpESTCdWacVc5gQzJlGY85kawfy4D2CVM7_QHqzu7g9_nHSvPOhH41HeZOuETGzP_ImJWW1xQiOW5BGN_zoRK-CAf1m7tzy1j2BtUU7U8lpdXt46DA-ewOPGiiVfa7F7CiuufAYPa1zL5XP4uefchDSAFCNqp7ilEo1oFGS-uBpPiUGjHaOUKsEgqrRk5kZXTSJUSTAcf0TKcUmrWHo1m5Pjk8ELOLsX2r6Env-V28AQLGdNqIyNVcFzbUWeGZt5-8jyXGQmDOBzS0U5qQt1yMrBzoSsaS49zWVFcxkHsIuE7npike3qw3g6ko3OylRnKnep0pGKuGYuTwtT2MiEBqetowA2WzbJRvNn8kZOA_jQNXudRUeMKt14UfdhWPg-C-BVzd5uJv6CzX0jC2Cr5ffN4HctaKuTif9Y_-u7p_4e1vqnx0fyaDA8fAPrMUorvmeHm9CbTxfurTfE5vpdI-0ELu5bwf4A8ZJDjg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUsR0QO4ECRoITtSaJk9g5IAQMow6FCiGqzs14y1zaZJhkVM2v8XX4ZZkWCVVceo0tx367_TaAV6Fm1iTCUqzWhi3MMqpyo2jhksJkIhPGtgGyB9neYfJ5ls624PeQC4NhlYNMbAW1rQy-kY9Y7E2FCIuZjIo-LOLbePJu8YtiByn0tA7tNDoS2XfrU399q99Oxx7Xr-N48unHxz3adxigJmGioUVYWJc5brwVZBJvyjDt7_WGhVaholbKeYEQKcF0apVWzHEnmDGpwnzPzAjm170CVzljOYYT8hnfvO-gBy2J8j5PJ2RiVHtdiflscUojluYRjf_ShW3LgH_Zued8tLfgxqpcqPWpOj4-pwYnd-B2b7-S9x3B3YUtV96Da11Hy_V9OBo7tyB9K4o5tUsUpkRjHwrSrE6qJTFormN8UksSRJWW1G5-0qdAlQQD8eekrEraRtGruiFfv08fwOGlQPYhbPtfuccYfOWsCZWxsSqSXFuRc2O5t4xskgtuwgDeDFCUi65Eh2xd60zIDubSw1y2MJdxAB8Q0JuZWF67_VAt57LnVplprnKXKR2pKNHM5VlhChuZ0OC2dRTAzoAm2fN8Lc8oNICXm2HPreiCUaWrVt0chiXveQCPOvRuduKv1okfZAHsDvg-W_yiA-1uaOI_zv_k4q2_gOuereSX6cH-U7gZI7HiQ3a4A9vNcuWeeQus0c9bUifw87J56w8MckEo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgg48H4ECjISN-o2iRPHOfZBVZCoEGJFOVnjsbMH2uxqkwiVX48nyW5bVKFyjZ3E45mxv8Qz3zD2LrbSYaadILY2KmGmBJQIovJZhUorja4PkD1WR9Ps00l-MtLkUC7MlfN7qXeasMFQEliai0TmZSLCcruh8oC7J2xjevxl9wdVjwu4RARokI5ZMdffeGXn6Qn6r0OVl05E77E7Xb2A819wenpp0zl8MFQvanquQoo1-bndtXYbf__F5HgzeR6y-yP25LuDsTxit3z9mN0eqlGeP2HfD7xf8LGMxEy4JS2E3FINCd52Z_MlR4LaFFvUq5ND7XjjZ2dj-lLNKYh-xut5LfoIeGha_vnrx6dsevjh2_6RGOsuCMykbkUVV84rX2DAhpgFgCdtXCiUsQOCLwA-LJMJaGlzBxakL7yWiDlQFqxCLZ-xSXiVf0GBU95hDOhSqLLSOl0W6IqAalxW6gLjiL1f6cQsBnoN0x-LS22GqTJhqkw_VSaN2B6pbd2TqLH7C2GGzehpRtkCSq_AJpBkVvpSVVi5BGOkYdskYpsrpZvRXxsTZAw4hqhyIvZ23Rw8jY5PoPbzbugjia6-iNjzwVjWIwmfxVlolBHbWlnPxcP_JdDW2sJuIP_L_-v-it1NydDoT3S8ySbtsvOvA4Rq7ZvRd_4AxeIQNw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-driven+brain+tumor+classification+and+segmentation+using+non-contrast+MRI&rft.jtitle=Scientific+reports&rft.au=Lu%2C+Nan-Han&rft.au=Huang%2C+Yung-Hui&rft.au=Liu%2C+Kuo-Ying&rft.au=Chen%2C+Tai-Been&rft.date=2025-07-30&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=27831&rft_id=info:doi/10.1038%2Fs41598-025-13591-2&rft_id=info%3Apmid%2F40745383&rft.externalDocID=40745383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |