A Novel Strategy for Simulating the Main Fractionator of Delayed Cokers by Separating the De-superheating Process

Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasoline, die- sel, gas oils and cokes. The main fractionator, separating superheating reactio...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 21; no. 3; pp. 285 - 294
Main Author 雷杨 张冰剑 侯小琼 陈清林
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2013
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(13)60472-4

Cover

More Information
Summary:Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasoline, die- sel, gas oils and cokes. The main fractionator, separating superheating reaction vapors from the coke drums into lighter oil products, involves a de-superheating section and a rectifying section, and couldn't be simulated as a whole column directly because of non-eouilibrium in the de-suoerheatine section. It is verv imoortant to correctlv simulate the main fractionator for operational parameter and energy-use optimization of delayed cokers. This paper discusses the principle of de-superheating processes, and then proposes a new simulation strategy. Some key issues such as composition prediction of the reaction vapors, selection of thermodynamic methods, estimation of tray efficiency, etc. are discussed. The proposed simulation approach is applied to two industrial delayed cokers with typical technological processes in a Chinese refinery by using PRO/II. The simulation results obtained are well consistent with the actual operation data, which indicates that the presented approach is suitable to simulate the main fraction- ators of delayed cokers or other distillation columns consisting of de-superheating sections and rectifying sections.
Bibliography:delayed coking, de-superheating process, fractionator, simulation
11-3270/TQ
Delayed coking is an important process in refinery to convert heavy residue oils from crude distillation units (CDUs) and fluid catalytic cracking units (FCCUs) into dry gas, liquefied petroleum gas (LPG), gasoline, die- sel, gas oils and cokes. The main fractionator, separating superheating reaction vapors from the coke drums into lighter oil products, involves a de-superheating section and a rectifying section, and couldn't be simulated as a whole column directly because of non-eouilibrium in the de-suoerheatine section. It is verv imoortant to correctlv simulate the main fractionator for operational parameter and energy-use optimization of delayed cokers. This paper discusses the principle of de-superheating processes, and then proposes a new simulation strategy. Some key issues such as composition prediction of the reaction vapors, selection of thermodynamic methods, estimation of tray efficiency, etc. are discussed. The proposed simulation approach is applied to two industrial delayed cokers with typical technological processes in a Chinese refinery by using PRO/II. The simulation results obtained are well consistent with the actual operation data, which indicates that the presented approach is suitable to simulate the main fraction- ators of delayed cokers or other distillation columns consisting of de-superheating sections and rectifying sections.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1004-9541
2210-321X
DOI:10.1016/S1004-9541(13)60472-4