Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to d...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 6; no. 1; p. 35622 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        19.10.2016
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/srep35622 | 
Cover
| Summary: | Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 2045-2322 2045-2322  | 
| DOI: | 10.1038/srep35622 |