Selective regulation of corticostriatal synapses by astrocytic phagocytosis
In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory s...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 2504 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-025-57577-0 |
Cover
Abstract | In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources.
Neural circuit homeostasis depends on astrocytic phagocytosis, but its circuit specificity remains unclear. Here, the authors show that astrocytes selectively eliminate corticostriatal synapses, regulating striatal plasticity and motor learning. |
---|---|
AbstractList | In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources. In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources. Neural circuit homeostasis depends on astrocytic phagocytosis, but its circuit specificity remains unclear. Here, the authors show that astrocytes selectively eliminate corticostriatal synapses, regulating striatal plasticity and motor learning. In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources.In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources. In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources.Neural circuit homeostasis depends on astrocytic phagocytosis, but its circuit specificity remains unclear. Here, the authors show that astrocytes selectively eliminate corticostriatal synapses, regulating striatal plasticity and motor learning. Abstract In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources. |
ArticleNumber | 2504 |
Author | Chung, Won-Suk Park, Hyungju Kim, Ji-young Kim, Hyeyeon |
Author_xml | – sequence: 1 givenname: Ji-young orcidid: 0000-0003-2272-9137 surname: Kim fullname: Kim, Ji-young organization: Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI) – sequence: 2 givenname: Hyeyeon surname: Kim fullname: Kim, Hyeyeon organization: Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) – sequence: 3 givenname: Won-Suk orcidid: 0000-0003-1060-9007 surname: Chung fullname: Chung, Won-Suk organization: Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 4 givenname: Hyungju orcidid: 0000-0002-9010-9434 surname: Park fullname: Park, Hyungju email: phj2@kbri.re.kr organization: Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40082427$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhi1Exfcf6AFF6oVLqD_GcXysEAUEUg9tz5ZjT5assvHWTpD239chQFEP-OLR-Jl3Zvwek_0hDEjIZ0YvGRX11wQMKlVSLkuppMrRHjniFFjJFBf77-JDcpbSmuYjNKsBDsghUFpz4OqI3P_EHt3YPWERcTX1duzCUIS2cCGOnQtpjJ0dbV-k3WC3CVPR7Aqbs8Ht8nuxfbSrOQypS6fkU2v7hGcv9wn5_f3619Vt-fDj5u7q20PpQNRjCTWV1GuoNDRCOlV7KlqsVCuUaphV1IOyNTRcSld5zxhSj6yRqJu2qjyIE3K36Ppg12Ybu42NOxNsZ54TIa6MnYfv0QhUmPtpCroF1aBmjomsz73DurU2a10sWtsY_kyYRrPpksO-twOGKRnBlGKSg6YZ_fIfug5THPKmM1VprUGyTJ2_UFOzQf823uuXZ4AvgIshpYjtG8Koma01i7UmW2uerTVzb7EUpQwPK4z_en9Q9RdHkqUV |
Cites_doi | 10.1016/j.neuron.2017.09.040 10.1016/j.neuron.2017.06.029 10.1126/science.aaz2288 10.31887/DCNS.2016.18.1/shaber 10.1038/nmeth.2836 10.1016/j.ymeth.2016.11.016 10.1016/j.cell.2007.10.036 10.1146/annurev.neuro.25.112701.142937 10.1038/s41586-020-03060-3 10.1126/sciadv.abk0231 10.1126/science.1202529 10.1038/nrn3710 10.1016/j.conb.2023.102732 10.1007/978-1-61779-452-0_3 10.1016/j.neuron.2022.06.006 10.1016/j.neuron.2015.09.035 10.15252/embj.2022111790 10.1016/j.neuron.2018.10.041 10.3389/fimmu.2020.599771 10.1002/glia.23877 10.1016/j.neuron.2014.10.045 10.1038/nature09612 10.1016/j.celrep.2022.110623 10.1073/pnas.0601758103 10.1038/emboj.2009.343 10.1016/j.cub.2004.06.053 10.1016/j.tins.2004.07.004 10.1038/nature12776 10.1152/physrev.00039.2020 10.1038/ncb2068 10.1016/j.neuron.2012.03.026 10.1038/nri2303 10.1126/sciadv.aay0001 10.3389/fimmu.2021.629979 10.1523/JNEUROSCI.3850-15.2016 10.1111/febs.15908 10.1016/j.neuron.2018.09.052 10.15252/embj.2020107121 10.1186/s12974-021-02201-3 10.1038/nature06329 10.4049/jimmunol.0901032 10.1126/scitranslmed.adf0141 10.1038/nrn2969 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 DOA |
DOI | 10.1038/s41467-025-57577-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: WRHA-SpringerOpen Free url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_3e7e4809049f47be91c13d472dce8faa 40082427 10_1038_s41467_025_57577_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Korea Brain Research Institute [24-BR-01-02] – fundername: National Research Foundation of Korea (NRF) grantid: RS-2023-00265524 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea (NRF) grantid: RS-2023-00265524 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AASML AAYXX CITATION PHGZM SNYQT CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO |
ID | FETCH-LOGICAL-c438t-48050d94694b35c78d03fe67f377b1a70d47a84b255c6dd11e0de1b5e9bf66d43 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:19 EDT 2025 Thu Sep 04 21:57:33 EDT 2025 Sat Aug 23 12:31:17 EDT 2025 Thu May 15 23:18:06 EDT 2025 Sun Jul 06 05:06:01 EDT 2025 Fri Mar 14 02:02:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-48050d94694b35c78d03fe67f377b1a70d47a84b255c6dd11e0de1b5e9bf66d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1060-9007 0000-0003-2272-9137 0000-0002-9010-9434 |
OpenAccessLink | https://www.proquest.com/docview/3176999451?pq-origsite=%requestingapplication% |
PMID | 40082427 |
PQID | 3176999451 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e7e4809049f47be91c13d472dce8faa proquest_miscellaneous_3177152490 proquest_journals_3176999451 pubmed_primary_40082427 crossref_primary_10_1038_s41467_025_57577_0 springer_journals_10_1038_s41467_025_57577_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-13 |
PublicationDateYYYYMMDD | 2025-03-13 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | GC Brown (57577_CR2) 2014; 15 JF Gilles (57577_CR42) 2017; 115 C Wang (57577_CR8) 2020; 367 LA Bradfield (57577_CR13) 2018; 100 C Eroglu (57577_CR1) 2010; 468 MG Packard (57577_CR10) 2002; 25 57577_CR43 BE Clarke (57577_CR39) 2021; 69 H Chai (57577_CR16) 2017; 95 Y Hashimoto (57577_CR37) 2009; 183 G Lemke (57577_CR33) 2008; 8 B Stevens (57577_CR4) 2007; 131 D Park (57577_CR19) 2007; 450 TOJ Cockram (57577_CR29) 2021; 12 T Iram (57577_CR34) 2016; 36 E Díaz-Hernández (57577_CR14) 2018; 100 NC Klapoetke (57577_CR21) 2014; 11 U Neniskyte (57577_CR31) 2023; 42 Y Smith (57577_CR32) 2004; 27 RM Costa (57577_CR26) 2004; 14 RC Paolicelli (57577_CR5) 2011; 333 X Wang (57577_CR35) 2010; 12 DP Schafer (57577_CR6) 2012; 74 T Kuraishi (57577_CR36) 2009; 28 DA Kupferschmidt (57577_CR12) 2017; 96 SBE Wolff (57577_CR15) 2022; 8 H Zhou (57577_CR18) 2021; 18 J Park (57577_CR27) 2021; 40 SN Haber (57577_CR24) 2016; 18 J Zhou (57577_CR30) 2023; 15 J Park (57577_CR3) 2023; 81 JH Lee (57577_CR9) 2021; 590 EJ Hwang (57577_CR41) 2019; 5 S El Mestikawy (57577_CR17) 2011; 12 MT Dang (57577_CR22) 2006; 103 FJ Hwang (57577_CR25) 2022; 110 WS Chung (57577_CR7) 2013; 504 PE Rothwell (57577_CR23) 2015; 88 NA Oberheim (57577_CR38) 2012; 814 S Cataldi (57577_CR11) 2022; 289 H Park (57577_CR20) 2014; 84 RA Kovács (57577_CR28) 2021; 11 C Wichmann (57577_CR40) 2022; 102 |
References_xml | – volume: 96 start-page: 476 year: 2017 ident: 57577_CR12 publication-title: Neuron doi: 10.1016/j.neuron.2017.09.040 – volume: 95 start-page: 531 year: 2017 ident: 57577_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2017.06.029 – volume: 367 start-page: 688 year: 2020 ident: 57577_CR8 publication-title: Science doi: 10.1126/science.aaz2288 – volume: 18 start-page: 7 year: 2016 ident: 57577_CR24 publication-title: Dialogues Clin. Neurosci. doi: 10.31887/DCNS.2016.18.1/shaber – volume: 11 start-page: 338 year: 2014 ident: 57577_CR21 publication-title: Nat. Methods doi: 10.1038/nmeth.2836 – volume: 115 start-page: 55 year: 2017 ident: 57577_CR42 publication-title: Methods doi: 10.1016/j.ymeth.2016.11.016 – volume: 131 start-page: 1164 year: 2007 ident: 57577_CR4 publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 25 start-page: 563 year: 2002 ident: 57577_CR10 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.25.112701.142937 – volume: 590 start-page: 612 year: 2021 ident: 57577_CR9 publication-title: Nature doi: 10.1038/s41586-020-03060-3 – volume: 8 start-page: 1 year: 2022 ident: 57577_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0231 – volume: 333 start-page: 1456 year: 2011 ident: 57577_CR5 publication-title: Science doi: 10.1126/science.1202529 – volume: 15 start-page: 209 year: 2014 ident: 57577_CR2 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3710 – volume: 81 start-page: 102732 year: 2023 ident: 57577_CR3 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2023.102732 – volume: 814 start-page: 23 year: 2012 ident: 57577_CR38 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-452-0_3 – volume: 110 start-page: 2790 year: 2022 ident: 57577_CR25 publication-title: Neuron doi: 10.1016/j.neuron.2022.06.006 – volume: 88 start-page: 345 year: 2015 ident: 57577_CR23 publication-title: Neuron doi: 10.1016/j.neuron.2015.09.035 – volume: 42 start-page: 1 year: 2023 ident: 57577_CR31 publication-title: EMBO J. doi: 10.15252/embj.2022111790 – volume: 100 start-page: 521 year: 2018 ident: 57577_CR13 publication-title: Neuron doi: 10.1016/j.neuron.2018.10.041 – volume: 11 start-page: 1 year: 2021 ident: 57577_CR28 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.599771 – volume: 69 start-page: 20 year: 2021 ident: 57577_CR39 publication-title: Glia doi: 10.1002/glia.23877 – volume: 84 start-page: 1009 year: 2014 ident: 57577_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2014.10.045 – volume: 468 start-page: 223 year: 2010 ident: 57577_CR1 publication-title: Nature doi: 10.1038/nature09612 – ident: 57577_CR43 doi: 10.1016/j.celrep.2022.110623 – volume: 103 start-page: 15254 year: 2006 ident: 57577_CR22 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601758103 – volume: 28 start-page: 3868 year: 2009 ident: 57577_CR36 publication-title: EMBO J doi: 10.1038/emboj.2009.343 – volume: 14 start-page: 1124 year: 2004 ident: 57577_CR26 publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.06.053 – volume: 27 start-page: 520 year: 2004 ident: 57577_CR32 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.07.004 – volume: 504 start-page: 394 year: 2013 ident: 57577_CR7 publication-title: Nature doi: 10.1038/nature12776 – volume: 102 start-page: 269 year: 2022 ident: 57577_CR40 publication-title: Physiol. Rev. doi: 10.1152/physrev.00039.2020 – volume: 12 start-page: 655 year: 2010 ident: 57577_CR35 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2068 – volume: 74 start-page: 691 year: 2012 ident: 57577_CR6 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 8 start-page: 327 year: 2008 ident: 57577_CR33 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2303 – volume: 5 start-page: 1 year: 2019 ident: 57577_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay0001 – volume: 12 start-page: 1 year: 2021 ident: 57577_CR29 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.629979 – volume: 36 start-page: 5185 year: 2016 ident: 57577_CR34 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3850-15.2016 – volume: 289 start-page: 2263 year: 2022 ident: 57577_CR11 publication-title: FEBS J. doi: 10.1111/febs.15908 – volume: 100 start-page: 739 year: 2018 ident: 57577_CR14 publication-title: Neuron doi: 10.1016/j.neuron.2018.09.052 – volume: 40 start-page: 1 year: 2021 ident: 57577_CR27 publication-title: EMBO J doi: 10.15252/embj.2020107121 – volume: 18 start-page: 1 year: 2021 ident: 57577_CR18 publication-title: J. Neuroinflamm. doi: 10.1186/s12974-021-02201-3 – volume: 450 start-page: 430 year: 2007 ident: 57577_CR19 publication-title: Nature doi: 10.1038/nature06329 – volume: 183 start-page: 7451 year: 2009 ident: 57577_CR37 publication-title: J. Immunol. doi: 10.4049/jimmunol.0901032 – volume: 15 start-page: 1 year: 2023 ident: 57577_CR30 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.adf0141 – volume: 12 start-page: 204 year: 2011 ident: 57577_CR17 publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2969 |
SSID | ssj0000391844 |
Score | 2.481041 |
Snippet | In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear... Abstract In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2504 |
SubjectTerms | 14/19 42/44 45/41 631/378/2591/2592 631/378/2596/1308 631/378/3920 64/110 82/51 9/30 9/74 Animal models Animals Astrocytes Astrocytes - metabolism Astrocytes - physiology Brain Caudate-putamen Cerebral Cortex - cytology Cerebral Cortex - physiology Corpus Striatum - cytology Corpus Striatum - metabolism Corpus Striatum - physiology Homeostasis Humanities and Social Sciences Learning Long-term potentiation Long-Term Potentiation - physiology Male Mice Mice, Inbred C57BL Mice, Knockout Motor skill Motor skill learning multidisciplinary Neostriatum Neural networks Neuronal Plasticity - physiology Phagocytes Phagocytosis Phagocytosis - physiology Plastic properties Plasticity Receptors Science Science (multidisciplinary) Synapses Synapses - metabolism Synapses - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQUqVeUFtKCYXKSNzaiCSeeJJjQaAVCC6wEjfLjm3oJVltlsP--46d7AIqqBduke1E9ht_vNE48xg7aoyzjQ1RXYMyhVJgqgV4WvGWyK6RAmO6pqtrOZnCxV1590zqK9wJG9IDD8AdC4cOqqwmJusBjavzJhcWsLCNq7yO1IhqnzlTcQ8WNbkuMP4lk4nquIe4JwT1VmIoSE8vTqKYsP81lvlPhDQePOef2NbIGPnvoaef2YZrv7APg4bkcptd3kQlG9q0-HzQlSekeec5uZX0Rhd1OYhh837Z6lnvem6WXFNp1yypns8e9H147Po__Vc2PT-7PZ2ko0JC2oCoFikBU2a2JhcXjCgbrGwmvJPoBaLJNRLgqCsw5Dc00to8d5l1uSldbbyUZKIdttl2rdtlPFzT8Ggyg4Y8stzqAhAtVFIaWXhZJOznCi01GxJhqBjAFpUasFWErYrYqixhJwHQdcuQxDoWkGnVaFr1P9MmbH9lDjWurF4R35FEaqHME3a4rqY1EQIdunXdY2yDxEugpn58G8y47gkE0gMFJuzXyq5PH397QHvvMaDv7GMRJmC4Dij22eZi_ugOiNMszI84ff8CLcbwsQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGpklc0MbHVthQkLhBRdukcXocT5sm0LjApN2ipEkGl_bp9e3w_nuctH1oYjvsFuWjSuw4-bl2bICPrfWuddGqa1HmouaYGy4CSbwjsGslxxSu6eqHvLwW327qmx2o5rcwyWk_hbRMx_TsHfZlEEmkY_JVAhhIpWewp5DXcVcv5GL7XyVGPFdCTO9jCq4eGHrvDkqh-h_Cl__ZRtOVc3EALyasyM7G2R3Cju9ewv6YPXLzCr7_TDls6LhiqzGjPNGY9YGRQkkj-pSRg7A1GzadWQ5-YHbDDNX27Yba2fK3uY3FfvgzvIbri_Nfi8t8yo2Qt4KrdS5UUReuIeVWWF63qFzBg5cYOKItDRKp0ShhSWNopXNl6QvnS1v7xgYpiTlvYLfrO38MLDpoBLSFRUu6WOlMJRCdUFJaWQVZZfBpppZejiEwdDJdc6VH2mqirU601UUGXyNBtz1j-OpU0a9u9cROzT16WkFD6kkQaH1TtiWnGVeu9SoYk8HJzA49ydSgCelIgrOiLjP4sG0maYgmDtP5_i71QUIkoqF5HI1s3M5ERLgjKszg88zXfx9_fEFvn9b9HTyv4laLLn_8BHbXqzt_Srhlbd-njfoXxF_lgQ priority: 102 providerName: Springer Nature |
Title | Selective regulation of corticostriatal synapses by astrocytic phagocytosis |
URI | https://link.springer.com/article/10.1038/s41467-025-57577-0 https://www.ncbi.nlm.nih.gov/pubmed/40082427 https://www.proquest.com/docview/3176999451 https://www.proquest.com/docview/3177152490 https://doaj.org/article/3e7e4809049f47be91c13d472dce8faa |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRKXijcpZWUkbhA1iR2Pc0LbVZdqERWiVNqb5Wfhkiyb7WH_PWMnuxXicUki24nsGT--8TjzEfLWGu-si15dAyLnNYNcMx5wxDsEu0YwSOGaPl-Ki2u-WNbLccOtH49V7ubENFG7zsY98lNc5wSCGV6XH1Y_88gaFb2rI4XGfXJYIhKJ1A2whP0eS4x-Ljkf_5UpmDzteZoZIocr4hTAp9_WoxS2_29Y8w8_aVp-5o_I0Ygb6XRQ9GNyz7dPyIOBSXL7lHy6Snw2OHXR9cAuj_KmXaBoXOIbXWLnQJxN-22rV73vqdlSjamd3WI-XX3XN_Gx63_0z8j1_Pzb7CIfeRJyy5nc5FwWdeEaNHS5YbUF6QoWvIDAAEypAcUOWnKD1oMVzpWlL5wvTe0bE4RART0nB23X-peExsMaAUxhwKBdVjpdcQDHpRBGVEFUGXm3k5ZaDeEwVHJjM6kG2SqUrUqyVUVGzqJA9yVjKOuU0K1v1DgyFPPgsQUNmiqBg_FNaUuGNa6c9TJonZGTnTrUOL56ddcbMvJmn40jI7o7dOu721QGEJ3wBuvxYlDjviY8Qh9eQUbe7_R69_F_N-j4_3V5RR5WsWvF437shBxs1rf-NWKWjZmkjolXOf84IYfT6eJqgfez88svXzF1JmaTtBvwCxQW7ZU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaxI6dHCpEodWWbVcIWqk3147twiVZNluh_Dl-G2Mn2QrxuPUW5aXxjMf-xmPPB_Cy0tZUxmd1teAxy6mIFWUOPd4g2NWcilCu6WjOpyfs42l-ugE_x7MwflvlOCaGgdo0lV8j38Z5jiOYYXn6dvE99qxRPrs6UmiogVrB7IQSY8PBjpntfmAI1-4cfEB7v8qy_b3j99N4YBmIK0aLVcyKJE9MiWEi0zSvRGES6iwXjgqhUyVQaKEKphF7V9yYNLWJsanObakd59hM_O812GR-AWUCm7t780-f16s8vv56wdhwWiehxXbLwtjkWWQRKQm8-m1GDMQBf0O7f2RqwwS4fxtuDciVvOu72h3YsPVduN5zWXb3YPYlMOrg4EmWPb89Wpw0jmB4i180gR8EkT5pu1otWtsS3RGFd5uqw-dk8VWd-8um_dbeh5Mr0eEDmNRNbR8B8dtFnNCJFhojw9SojAlhWMG55pnjWQSvR23JRV-QQ4ZEOi1kr1uJupVBtzKJYNcrdP2mL6YdbjTLczn4pqRWWGxBicGSY0LbMq1SihJnprKFUyqCrdEccvDwVl72xwherB-jb_qEi6ptcxHeEYiPWIlyPOzNuJaEefDFMhHBm9Gulz__d4Me_1-W53Bjenx0KA8P5rMncDPz3cxvPqRbMFktL-xTRFAr_WzopgTOrtozfgExnCrC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNYsd2DggBZWlZqJCgUm-uHduFS7JstkL5a_w6xk6yFeJx6y3KS-N52N94bH8AT2rjbG1DVdcInrKSilRT5jHiLYJdw6mIxzV9POB7h-z9UXm0BT-nvTBhWeXUJ8aO2rZ1mCOf4TjHEcywMp_5cVnEp935y-X3NDBIhUrrRKcxuMjC9T8wfete7O-irZ8Wxfztlzd76cgwkNaMynXKZFZmtsIUkRla1kLajHrHhadCmFwLFFhoyQzi7ppbm-cusy43pauM5xybiP-9ABdFaFHYpT5_t5nfCSevS8bGfToZlbOOxV4p8MciRhJ49dtYGCkD_oZz_6jRxqFvfg2ujpiVvBqc7DpsueYGXBpYLPubsPgcuXSw2ySrgdkebU1aTzCxxS_ayAyCGJ90faOXneuI6YnGu23d43Oy_KpPwmXbfetuweG5aPA2bDdt4-4CCQtFvDCZEQZzwtzqgglhmeTc8MLzIoFnk7bUcjiKQ8USOpVq0K1C3aqoW5Ul8DoodPNmOEY73mhXJ2qMSkWdcNiCCtMkz4RxVV7nFCUubO2k1zqBnckcaoztTp15YgKPN48xKkOpRTeuPY3vCERGrEI57gxm3EjCAuxihUjg-WTXs5__u0H3_i_LI7iM8aA-7B8s7sOVInhZWHVId2B7vTp1DxA6rc3D6KMEjs87KH4BAKsoXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+regulation+of+corticostriatal+synapses+by+astrocytic+phagocytosis&rft.jtitle=Nature+communications&rft.date=2025-03-13&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=2504&rft_id=info:doi/10.1038%2Fs41467-025-57577-0&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |