Selective regulation of corticostriatal synapses by astrocytic phagocytosis

In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory s...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 2504 - 12
Main Authors Kim, Ji-young, Kim, Hyeyeon, Chung, Won-Suk, Park, Hyungju
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-025-57577-0

Cover

More Information
Summary:In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources. Neural circuit homeostasis depends on astrocytic phagocytosis, but its circuit specificity remains unclear. Here, the authors show that astrocytes selectively eliminate corticostriatal synapses, regulating striatal plasticity and motor learning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-025-57577-0