An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network
Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the ‘Internet of Things’. Such devices need to be ultrathin to achieve sea...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 11; pp. 1057 - 1065 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1748-3387 1748-3395 1748-3395 |
DOI | 10.1038/s41565-018-0244-6 |
Cover
Abstract | Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the ‘Internet of Things’. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics.
Self-reconstruction of conducting nanostructures assisted by a dynamically crosslinked polymer network enables the fabrication of autonomous self-healable and stretchable multi-component electronic skin. |
---|---|
AbstractList | Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the 'Internet of Things'. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics.Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the 'Internet of Things'. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics. Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the 'Internet of Things'. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics. Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the ‘Internet of Things’. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics. Self-reconstruction of conducting nanostructures assisted by a dynamically crosslinked polymer network enables the fabrication of autonomous self-healable and stretchable multi-component electronic skin. |
Author | Yun, Youngjun Kim, Yeongin Kang, Jiheong Liu, Yuxin Bao, Zhenan Oh, Jin Young Katsumata, Toru Lee, Yeongjun Molina-Lopez, Francisco McGuire, Allister F. Ham, Jooyeun Vardoulis, Orestis Krason, Marta Son, Donghee Tok, Jeffrey B.-H. Matsuhisa, Naoji Mun, Jaewan To, John WF Kraft, Ulrike |
Author_xml | – sequence: 1 givenname: Donghee surname: Son fullname: Son, Donghee organization: Department of Chemical Engineering, Stanford University, Biomedical Research Institute, Korea Institute of Science and Technology – sequence: 2 givenname: Jiheong surname: Kang fullname: Kang, Jiheong organization: Department of Chemical Engineering, Stanford University – sequence: 3 givenname: Orestis surname: Vardoulis fullname: Vardoulis, Orestis organization: Department of Chemical Engineering, Stanford University – sequence: 4 givenname: Yeongin orcidid: 0000-0002-9495-3165 surname: Kim fullname: Kim, Yeongin organization: Department of Electrical Engineering, Stanford University – sequence: 5 givenname: Naoji surname: Matsuhisa fullname: Matsuhisa, Naoji organization: Department of Chemical Engineering, Stanford University – sequence: 6 givenname: Jin Young orcidid: 0000-0003-2260-9960 surname: Oh fullname: Oh, Jin Young organization: Department of Chemical Engineering, Stanford University, Department of Chemical Engineering, Kyung Hee University – sequence: 7 givenname: John WF surname: To fullname: To, John WF organization: Department of Chemical Engineering, Stanford University – sequence: 8 givenname: Jaewan surname: Mun fullname: Mun, Jaewan organization: Department of Chemical Engineering, Stanford University – sequence: 9 givenname: Toru surname: Katsumata fullname: Katsumata, Toru organization: Department of Chemical Engineering, Stanford University, Corporate Research and Development, Performance Materials Technology Center, Asahi Kasei Corporation – sequence: 10 givenname: Yuxin surname: Liu fullname: Liu, Yuxin organization: Department of Bioengineering, Stanford University – sequence: 11 givenname: Allister F. surname: McGuire fullname: McGuire, Allister F. organization: Department of Chemistry, Stanford University – sequence: 12 givenname: Marta surname: Krason fullname: Krason, Marta organization: Department of Electrical Engineering, Stanford University – sequence: 13 givenname: Francisco surname: Molina-Lopez fullname: Molina-Lopez, Francisco organization: Department of Chemical Engineering, Stanford University – sequence: 14 givenname: Jooyeun surname: Ham fullname: Ham, Jooyeun organization: Department of Mechanical Engineering, Stanford University – sequence: 15 givenname: Ulrike surname: Kraft fullname: Kraft, Ulrike organization: Department of Electrical Engineering, Stanford University – sequence: 16 givenname: Yeongjun surname: Lee fullname: Lee, Yeongjun organization: Department of Chemical Engineering, Stanford University – sequence: 17 givenname: Youngjun orcidid: 0000-0002-3639-9741 surname: Yun fullname: Yun, Youngjun organization: Samsung Advanced Institute of Technology Yeongtong-gu, Suwon-si – sequence: 18 givenname: Jeffrey B.-H. orcidid: 0000-0002-2794-0663 surname: Tok fullname: Tok, Jeffrey B.-H. organization: Department of Chemical Engineering, Stanford University – sequence: 19 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan email: zbao@stanford.edu organization: Department of Chemical Engineering, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30127474$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrHiEUhqUkNNcf0E0RuulmWm_jOMsQeoNAN81aHOf41WRGU3UavlX_ep1M0kKgXSn6PIfD-56ggxADIPSKkneUcPU-C9rKtiFUNYQJ0cgX6Jh2QjWc9-3Bn7vqjtBJzjeEtKxn4iU64oSyTnTiGP26CNiHArtkCow4w-Sa72AmM0yAYQJbUgze4nzrA877XGDGzgzJ2wf-pzd43AczVySBjSGXtNjiY8DRYYODCXF7WlLFKzCu32GHA5T7mG7P0KEzU4bzx_MUXX_88O3yc3P19dOXy4urxgquSsMM7aQbhAOwRLqRcib5QEZH2l5R0olBiZZY6DijSiiQnIqeWmegJUBA8VP0dpt7l-KPBXLRs88WpskEiEvWjPSUCSpVW9E3z9CbuKRQt9OM8ocQ5Uq9fqSWYYZR3yU_m7TXT9FWoNsAm2LOCZy2vpg1mpKMnzQlei1RbyXqWqJeS9SymvSZ-TT8fw7bnFzZsIP0d-l_S78B9F2vpw |
CitedBy_id | crossref_primary_10_3390_s19204353 crossref_primary_10_1038_s41528_022_00158_8 crossref_primary_10_1039_D3NR00807J crossref_primary_10_1002_admt_202101657 crossref_primary_10_1002_admt_202200163 crossref_primary_10_1002_adfm_201907184 crossref_primary_10_1016_j_nanoen_2020_105044 crossref_primary_10_1002_advs_202302463 crossref_primary_10_1021_acsaelm_2c01791 crossref_primary_10_1021_acsami_9b21755 crossref_primary_10_1021_acssuschemeng_9b07250 crossref_primary_10_1039_D1MH01746B crossref_primary_10_1002_adfm_202307455 crossref_primary_10_1002_admi_202101462 crossref_primary_10_1016_j_polymer_2020_123119 crossref_primary_10_1039_C9SM00948E crossref_primary_10_1002_chem_201902043 crossref_primary_10_1021_acsami_9b21789 crossref_primary_10_1016_j_compscitech_2022_109462 crossref_primary_10_1016_j_ceramint_2021_12_235 crossref_primary_10_1002_adma_202003155 crossref_primary_10_1002_sstr_202100105 crossref_primary_10_1021_acsami_0c14472 crossref_primary_10_1002_admt_202100107 crossref_primary_10_1002_adfm_202006298 crossref_primary_10_1007_s10965_024_04004_5 crossref_primary_10_1039_C9QM00115H crossref_primary_10_1007_s42765_023_00270_y crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1002_adma_202210385 crossref_primary_10_1016_j_device_2024_100331 crossref_primary_10_1002_adfm_202001604 crossref_primary_10_1039_D5NR00171D crossref_primary_10_1002_aelm_202200512 crossref_primary_10_1039_D2MH00074A crossref_primary_10_1002_adfm_201901623 crossref_primary_10_1039_D0TA12345E crossref_primary_10_1088_1361_6463_abd9ec crossref_primary_10_1039_D3MH00597F crossref_primary_10_1038_s41578_024_00729_3 crossref_primary_10_1007_s10570_021_03878_8 crossref_primary_10_1021_acsnano_2c10657 crossref_primary_10_1002_advs_202305702 crossref_primary_10_1021_acsami_2c04916 crossref_primary_10_1016_j_actbio_2021_06_018 crossref_primary_10_1088_1741_2552_ad2d31 crossref_primary_10_1002_anie_202212512 crossref_primary_10_1109_LED_2020_3010019 crossref_primary_10_1039_C8CS00801A crossref_primary_10_1002_smo_20240008 crossref_primary_10_1021_acsnano_4c04291 crossref_primary_10_1002_smsc_202000080 crossref_primary_10_3390_mi15111350 crossref_primary_10_1039_C9NR09438E crossref_primary_10_1002_advs_201900186 crossref_primary_10_1016_j_porgcoat_2021_106213 crossref_primary_10_1038_s41578_019_0167_3 crossref_primary_10_1360_nso_20230078 crossref_primary_10_1002_adfm_202306576 crossref_primary_10_1002_admt_202101618 crossref_primary_10_1016_j_cis_2025_103439 crossref_primary_10_1016_j_polymer_2022_125071 crossref_primary_10_1021_accountsmr_2c00101 crossref_primary_10_1007_s11431_018_9503_8 crossref_primary_10_1039_C8TA12360H crossref_primary_10_1002_admt_201900757 crossref_primary_10_1016_j_polymer_2019_01_038 crossref_primary_10_1016_j_polymer_2021_123461 crossref_primary_10_1016_j_matdes_2020_108995 crossref_primary_10_1002_admt_202201067 crossref_primary_10_1002_adma_202309821 crossref_primary_10_1016_j_bioactmat_2022_01_038 crossref_primary_10_1063_5_0035996 crossref_primary_10_1039_D0CS00035C crossref_primary_10_1021_acsami_9b22676 crossref_primary_10_1002_aelm_201900285 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1016_j_nanoen_2019_03_006 crossref_primary_10_1016_j_nanoen_2023_108379 crossref_primary_10_1021_acsapm_2c00725 crossref_primary_10_1039_C9EE03861B crossref_primary_10_1002_adma_202108203 crossref_primary_10_1063_10_0019678 crossref_primary_10_1016_j_polymer_2024_127826 crossref_primary_10_1002_admt_202202140 crossref_primary_10_1016_j_cej_2024_151850 crossref_primary_10_1002_adfm_202306793 crossref_primary_10_1002_inf2_12603 crossref_primary_10_1002_adma_201906460 crossref_primary_10_1016_j_cej_2022_137633 crossref_primary_10_1016_j_nanoen_2021_106606 crossref_primary_10_1016_j_mser_2019_100523 crossref_primary_10_1007_s11814_022_1321_y crossref_primary_10_1002_smsc_202300143 crossref_primary_10_1021_acs_langmuir_3c01121 crossref_primary_10_1016_j_nanoen_2023_109239 crossref_primary_10_1039_C9CC03925B crossref_primary_10_1038_s41467_020_18025_3 crossref_primary_10_1002_aelm_202300792 crossref_primary_10_1021_acsami_9b16336 crossref_primary_10_1038_s41377_023_01310_3 crossref_primary_10_1002_adma_201905767 crossref_primary_10_1002_adfm_201910196 crossref_primary_10_1002_smll_202103271 crossref_primary_10_1007_s40820_019_0323_8 crossref_primary_10_1021_acsapm_3c01861 crossref_primary_10_1021_acsomega_1c00462 crossref_primary_10_1021_acsami_9b08712 crossref_primary_10_1002_adfm_202311567 crossref_primary_10_1109_JPROC_2019_2908433 crossref_primary_10_1039_D0MH01539C crossref_primary_10_1088_1361_665X_aca4af crossref_primary_10_1002_aenm_202103070 crossref_primary_10_1038_s41467_020_17674_8 crossref_primary_10_1021_acsnano_1c01431 crossref_primary_10_1149_2_0241914jes crossref_primary_10_1002_adfm_202310225 crossref_primary_10_1038_s41467_022_34235_3 crossref_primary_10_1002_adfm_201904523 crossref_primary_10_1007_s11071_022_07684_0 crossref_primary_10_1016_j_jallcom_2024_173833 crossref_primary_10_1017_wtc_2020_3 crossref_primary_10_1021_accountsmr_1c00041 crossref_primary_10_1002_batt_202000115 crossref_primary_10_1016_j_cej_2022_140384 crossref_primary_10_1002_smll_202104706 crossref_primary_10_1016_j_cej_2020_124583 crossref_primary_10_1016_j_matdes_2022_110388 crossref_primary_10_1021_acsami_9b21949 crossref_primary_10_1039_D4TC04763J crossref_primary_10_1002_aenm_202100801 crossref_primary_10_1016_j_measurement_2022_111817 crossref_primary_10_1021_acsami_9b05464 crossref_primary_10_1039_D1TA08453D crossref_primary_10_1038_s41528_022_00230_3 crossref_primary_10_1038_s41467_020_15990_7 crossref_primary_10_1002_adma_202007346 crossref_primary_10_1016_j_eml_2020_100658 crossref_primary_10_1021_acsami_0c19512 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_1016_j_polymer_2022_125246 crossref_primary_10_1002_advs_202207237 crossref_primary_10_1016_j_compositesa_2022_107144 crossref_primary_10_1016_j_cej_2024_149173 crossref_primary_10_1039_D1TC05087G crossref_primary_10_1039_D4TC01123F crossref_primary_10_1016_j_nanoen_2022_107636 crossref_primary_10_1021_acsnano_2c07097 crossref_primary_10_1002_app_54643 crossref_primary_10_1021_accountsmr_1c00020 crossref_primary_10_1021_acsmacrolett_0c00635 crossref_primary_10_1016_j_compositesb_2021_109434 crossref_primary_10_1016_j_mattod_2023_05_025 crossref_primary_10_1021_acsami_9b21721 crossref_primary_10_1002_advs_202205485 crossref_primary_10_1021_acsnano_1c08018 crossref_primary_10_1021_acsapm_8b00183 crossref_primary_10_1002_aelm_202100581 crossref_primary_10_1002_inf2_12413 crossref_primary_10_1016_j_snb_2020_129077 crossref_primary_10_1088_2399_7532_abe929 crossref_primary_10_1002_biot_202100231 crossref_primary_10_1186_s11671_024_04004_w crossref_primary_10_1016_j_nanoen_2021_106695 crossref_primary_10_1021_acsami_0c15578 crossref_primary_10_1021_acsnano_9b02690 crossref_primary_10_1002_aenm_202201532 crossref_primary_10_1002_inf2_12426 crossref_primary_10_1021_acsami_0c15339 crossref_primary_10_1002_adfm_202308353 crossref_primary_10_1016_j_porgcoat_2024_108227 crossref_primary_10_1002_adma_201808138 crossref_primary_10_1016_j_carbon_2020_07_042 crossref_primary_10_1016_j_cej_2021_133111 crossref_primary_10_1016_j_carbpol_2020_116360 crossref_primary_10_1088_1361_6463_ab5b2b crossref_primary_10_1016_j_coco_2025_102249 crossref_primary_10_1002_adfm_201808247 crossref_primary_10_1039_C9TA13928A crossref_primary_10_1021_acsami_4c05971 crossref_primary_10_1002_smll_202106937 crossref_primary_10_1002_admt_202201677 crossref_primary_10_1002_advs_202001938 crossref_primary_10_1016_j_xcrp_2021_100541 crossref_primary_10_1021_acsaelm_1c00484 crossref_primary_10_1021_acsomega_2c00580 crossref_primary_10_1016_j_cej_2024_153861 crossref_primary_10_3390_en16104047 crossref_primary_10_1002_smll_202104764 crossref_primary_10_1021_acsaem_1c00422 crossref_primary_10_1016_j_nanoen_2021_106682 crossref_primary_10_1021_acs_chemmater_9b00819 crossref_primary_10_1021_acsaelm_9b00099 crossref_primary_10_1021_acsami_3c17851 crossref_primary_10_1177_15589250231220478 crossref_primary_10_20517_ss_2024_05 crossref_primary_10_1002_adsu_202300220 crossref_primary_10_3390_molecules27123796 crossref_primary_10_1016_j_ensm_2020_05_006 crossref_primary_10_1021_acs_chemrev_1c00365 crossref_primary_10_1002_adfm_202420613 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1039_C9TC00709A crossref_primary_10_1021_acsami_0c08213 crossref_primary_10_1016_j_snb_2021_130674 crossref_primary_10_1002_adma_202104798 crossref_primary_10_3390_electronics9020269 crossref_primary_10_1002_smll_202400912 crossref_primary_10_1021_jacs_4c00541 crossref_primary_10_1039_C9TC04537F crossref_primary_10_1002_aenm_202001424 crossref_primary_10_1016_j_carbpol_2023_121520 crossref_primary_10_1038_s41467_022_28901_9 crossref_primary_10_1063_1_5103274 crossref_primary_10_3390_polym14183766 crossref_primary_10_1002_marc_202200047 crossref_primary_10_1109_JSEN_2021_3097349 crossref_primary_10_1002_sus2_207 crossref_primary_10_1126_sciadv_adp9818 crossref_primary_10_1016_j_ensm_2020_05_025 crossref_primary_10_1002_aenm_202003835 crossref_primary_10_1063_5_0040109 crossref_primary_10_1002_admt_202000012 crossref_primary_10_1021_acsnano_8b07738 crossref_primary_10_1002_adfm_202004673 crossref_primary_10_1016_j_nanoen_2021_106077 crossref_primary_10_1016_j_nanoen_2022_107242 crossref_primary_10_3390_polym13071133 crossref_primary_10_1007_s00604_023_05740_z crossref_primary_10_1021_acsenergylett_0c01062 crossref_primary_10_1038_s41928_022_00868_x crossref_primary_10_1002_adma_201902987 crossref_primary_10_1016_j_bios_2024_116257 crossref_primary_10_1002_adma_201902743 crossref_primary_10_1021_acsami_0c09552 crossref_primary_10_1021_acs_nanolett_4c01332 crossref_primary_10_1002_app_49748 crossref_primary_10_1038_d41586_018_07434_6 crossref_primary_10_1002_admt_202300243 crossref_primary_10_1016_j_compscitech_2020_108559 crossref_primary_10_1126_science_adh0619 crossref_primary_10_1557_s43578_021_00381_5 crossref_primary_10_3390_nano12224018 crossref_primary_10_3390_s23052479 crossref_primary_10_1002_adma_202208619 crossref_primary_10_1016_j_compscitech_2021_108856 crossref_primary_10_1038_s41528_020_00092_7 crossref_primary_10_1126_sciadv_abf5695 crossref_primary_10_3390_batteries9040202 crossref_primary_10_1002_adfm_202008807 crossref_primary_10_1002_adma_202105416 crossref_primary_10_1021_acsami_9b13266 crossref_primary_10_1109_LED_2021_3109290 crossref_primary_10_1007_s12274_022_4088_x crossref_primary_10_1039_D4MH01166J crossref_primary_10_1002_adma_202307070 crossref_primary_10_1016_j_cej_2019_03_045 crossref_primary_10_1016_j_cej_2019_03_287 crossref_primary_10_1002_adma_202102332 crossref_primary_10_1016_j_jallcom_2020_155773 crossref_primary_10_1021_acsami_3c12594 crossref_primary_10_1002_app_54934 crossref_primary_10_1002_admt_202101283 crossref_primary_10_1021_acsami_2c07334 crossref_primary_10_1002_adma_202413774 crossref_primary_10_1038_s41565_022_01190_5 crossref_primary_10_1016_j_compscitech_2021_108834 crossref_primary_10_1021_acssuschemeng_9b04623 crossref_primary_10_1016_j_ccr_2020_213549 crossref_primary_10_1021_acsabm_1c00501 crossref_primary_10_1038_s41928_019_0235_0 crossref_primary_10_1016_j_nanoen_2019_104275 crossref_primary_10_1002_sus2_204 crossref_primary_10_1002_adfm_202103075 crossref_primary_10_1002_marc_202100519 crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1021_acs_chemmater_9b04592 crossref_primary_10_1002_smll_202306749 crossref_primary_10_1002_ente_202100960 crossref_primary_10_1002_adma_201900363 crossref_primary_10_1007_s12274_019_2595_1 crossref_primary_10_1016_j_sna_2021_113144 crossref_primary_10_1021_acs_chemrev_3c00139 crossref_primary_10_1038_s44287_024_00063_4 crossref_primary_10_1039_C8TB02862A crossref_primary_10_1021_acsami_9b18985 crossref_primary_10_1002_ange_202200226 crossref_primary_10_1016_j_compstruct_2022_116433 crossref_primary_10_1007_s10570_021_04120_1 crossref_primary_10_1016_j_cej_2021_132685 crossref_primary_10_1002_admt_202300291 crossref_primary_10_1016_j_progpolymsci_2023_101724 crossref_primary_10_1038_s41586_021_03295_8 crossref_primary_10_1021_acsami_9b23083 crossref_primary_10_1002_adhm_202100116 crossref_primary_10_1021_acsami_2c14918 crossref_primary_10_1002_adma_202106570 crossref_primary_10_1021_acsami_3c00965 crossref_primary_10_1016_j_nanoen_2022_107061 crossref_primary_10_3390_gels8090534 crossref_primary_10_1038_s41467_019_14244_5 crossref_primary_10_1002_aisy_201900140 crossref_primary_10_1016_j_mtcomm_2023_107646 crossref_primary_10_1038_s41467_024_53955_2 crossref_primary_10_3390_mi13081356 crossref_primary_10_1016_j_jobab_2022_11_001 crossref_primary_10_1016_j_cej_2021_130858 crossref_primary_10_1021_acsnano_1c06204 crossref_primary_10_1002_advs_202001116 crossref_primary_10_1039_D0TC02949A crossref_primary_10_1021_jacs_0c07651 crossref_primary_10_1038_s41587_019_0321_x crossref_primary_10_3390_bios12100910 crossref_primary_10_1016_j_nanoen_2021_106704 crossref_primary_10_1021_acsaem_2c02211 crossref_primary_10_1016_j_nanoen_2023_108446 crossref_primary_10_34133_research_0367 crossref_primary_10_1021_acsbiomaterials_9b01659 crossref_primary_10_1002_admt_202101271 crossref_primary_10_1002_smll_202100542 crossref_primary_10_1038_s41467_024_47432_z crossref_primary_10_3390_ma14112962 crossref_primary_10_1021_acsanm_2c04437 crossref_primary_10_1021_acsnano_1c03183 crossref_primary_10_1021_acsapm_1c01098 crossref_primary_10_1002_adfm_202200961 crossref_primary_10_1016_j_jcis_2022_05_106 crossref_primary_10_1073_pnas_1917762116 crossref_primary_10_1002_adma_202420008 crossref_primary_10_1039_D0TC00702A crossref_primary_10_1016_j_ensm_2021_11_047 crossref_primary_10_1021_acsnano_1c08405 crossref_primary_10_1002_adma_202002211 crossref_primary_10_1039_D0TB02460K crossref_primary_10_1021_acssensors_4c00442 crossref_primary_10_1016_j_mattod_2020_10_026 crossref_primary_10_1016_j_cej_2024_154079 crossref_primary_10_1021_acsmaterialslett_9b00376 crossref_primary_10_1016_j_apmt_2022_101584 crossref_primary_10_1039_D1TC04233E crossref_primary_10_1016_j_jcis_2020_02_107 crossref_primary_10_1002_smll_202304353 crossref_primary_10_1007_s10853_025_10651_w crossref_primary_10_1002_adma_202410650 crossref_primary_10_1016_j_coco_2022_101131 crossref_primary_10_1002_smll_202409365 crossref_primary_10_1016_j_matchemphys_2022_125730 crossref_primary_10_1038_s41467_024_53957_0 crossref_primary_10_1126_sciadv_abg9180 crossref_primary_10_1038_s41565_021_00926_z crossref_primary_10_1021_acsami_4c10541 crossref_primary_10_1021_acs_nanolett_2c02647 crossref_primary_10_1038_s44222_023_00102_z crossref_primary_10_11648_j_ajn_20250901_12 crossref_primary_10_2139_ssrn_4019881 crossref_primary_10_1038_s41467_022_31553_4 crossref_primary_10_1016_j_cej_2023_148324 crossref_primary_10_1126_sciadv_abe0586 crossref_primary_10_1007_s40820_023_01199_y crossref_primary_10_1016_j_device_2024_100426 crossref_primary_10_1002_admt_202101440 crossref_primary_10_1002_aisy_202200115 crossref_primary_10_1002_smtd_202100676 crossref_primary_10_1002_adfm_202009281 crossref_primary_10_1039_C9QM00055K crossref_primary_10_1021_acsanm_1c03347 crossref_primary_10_1039_C9TA00618D crossref_primary_10_1002_adom_202402258 crossref_primary_10_1016_j_nanoen_2019_104429 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1002_anie_202303446 crossref_primary_10_3390_mi11020194 crossref_primary_10_1021_acs_nanolett_0c03779 crossref_primary_10_1016_j_scib_2019_04_011 crossref_primary_10_1016_j_bios_2024_116222 crossref_primary_10_1002_aelm_201900681 crossref_primary_10_1002_agt2_319 crossref_primary_10_3390_gels8020092 crossref_primary_10_1016_j_apmt_2021_101257 crossref_primary_10_1002_adfm_202400829 crossref_primary_10_1088_1361_6501_ac95b4 crossref_primary_10_1002_adsu_202000056 crossref_primary_10_1038_s41467_022_32966_x crossref_primary_10_1038_s41578_022_00502_4 crossref_primary_10_20517_ss_2024_77 crossref_primary_10_1002_smll_202201597 crossref_primary_10_1021_acsami_1c13840 crossref_primary_10_1021_acsnano_0c05105 crossref_primary_10_1039_C9RA06098G crossref_primary_10_1002_marc_201900450 crossref_primary_10_1002_adma_202106309 crossref_primary_10_1016_j_colsurfb_2024_114384 crossref_primary_10_1038_s41467_022_28015_2 crossref_primary_10_1002_mame_202100132 crossref_primary_10_1016_j_compscitech_2021_109042 crossref_primary_10_1002_adma_202202418 crossref_primary_10_1002_mame_202200310 crossref_primary_10_1016_j_apmt_2024_102122 crossref_primary_10_1016_j_compositesa_2022_107215 crossref_primary_10_1002_smm2_1228 crossref_primary_10_1002_adfm_202402508 crossref_primary_10_1002_admt_202100445 crossref_primary_10_1089_soro_2018_0116 crossref_primary_10_1039_C9MH01798D crossref_primary_10_1016_j_mser_2023_100759 crossref_primary_10_1039_D1RA03392A crossref_primary_10_1021_acsami_2c14642 crossref_primary_10_1021_acs_iecr_2c04038 crossref_primary_10_1002_advs_202304506 crossref_primary_10_1002_smll_202103541 crossref_primary_10_1103_PhysRevE_98_062144 crossref_primary_10_1038_s41578_024_00728_4 crossref_primary_10_1039_D2NR02493D crossref_primary_10_1002_admi_202102426 crossref_primary_10_1021_acsnano_0c09204 crossref_primary_10_1021_acsnano_2c06264 crossref_primary_10_1039_C9QI00989B crossref_primary_10_1039_D0TC04719H crossref_primary_10_1016_j_cej_2025_161886 crossref_primary_10_1021_acsaelm_0c01129 crossref_primary_10_1002_adfm_202010461 crossref_primary_10_1002_smll_202000450 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1021_acs_chemrev_2c00231 crossref_primary_10_1021_acsapm_2c00812 crossref_primary_10_1002_mame_202000080 crossref_primary_10_1021_acs_nanolett_0c00869 crossref_primary_10_1016_j_matdes_2023_112326 crossref_primary_10_1016_j_mser_2023_100734 crossref_primary_10_1021_acsnano_3c02513 crossref_primary_10_1039_C9TA04673A crossref_primary_10_1021_acsnano_1c02010 crossref_primary_10_1039_C9NR09420B crossref_primary_10_1002_admt_202201352 crossref_primary_10_1039_D3MH00236E crossref_primary_10_1002_adma_202002180 crossref_primary_10_1002_adma_202106184 crossref_primary_10_1007_s42765_020_00062_8 crossref_primary_10_1002_adfm_201907290 crossref_primary_10_1039_D2MA00581F crossref_primary_10_1039_D3TB01373A crossref_primary_10_1002_advs_202202980 crossref_primary_10_1021_acsami_9b21659 crossref_primary_10_1038_s41467_023_35810_y crossref_primary_10_1002_pol_20230020 crossref_primary_10_1002_ange_202200705 crossref_primary_10_1002_adfm_201910214 crossref_primary_10_1002_anie_202200226 crossref_primary_10_1021_acsami_9b21446 crossref_primary_10_1016_j_mtphys_2022_100647 crossref_primary_10_1007_s11664_022_09530_w crossref_primary_10_1088_1361_665X_ac1b3a crossref_primary_10_3390_membranes11060412 crossref_primary_10_1002_smm2_1271 crossref_primary_10_1016_j_flatc_2022_100452 crossref_primary_10_1002_adfm_201910026 crossref_primary_10_1016_j_cej_2022_136876 crossref_primary_10_1002_adfm_201903984 crossref_primary_10_1002_adma_201901924 crossref_primary_10_1126_sciadv_aay9842 crossref_primary_10_1021_acs_chemmater_3c00914 crossref_primary_10_1016_j_bios_2023_115360 crossref_primary_10_1016_j_compscitech_2022_109751 crossref_primary_10_1016_j_polymer_2020_122199 crossref_primary_10_1088_1361_6528_ab2d5d crossref_primary_10_1002_aisy_202100228 crossref_primary_10_1016_j_cej_2021_128734 crossref_primary_10_1021_acsapm_1c01063 crossref_primary_10_1039_C8CS00814K crossref_primary_10_1016_j_giant_2024_100339 crossref_primary_10_1007_s10853_022_07951_w crossref_primary_10_1038_s41528_023_00287_8 crossref_primary_10_1002_admt_202201186 crossref_primary_10_1038_s41566_023_01335_5 crossref_primary_10_1021_acs_nanolett_3c03670 crossref_primary_10_1002_marc_202200766 crossref_primary_10_1021_acsnano_8b09161 crossref_primary_10_1002_smll_202103734 crossref_primary_10_1016_j_cej_2019_122823 crossref_primary_10_1002_anie_202318856 crossref_primary_10_1002_adma_202201342 crossref_primary_10_1002_admi_201901959 crossref_primary_10_1002_smll_201803939 crossref_primary_10_1039_D2NR06328J crossref_primary_10_1063_5_0160238 crossref_primary_10_1039_D0NH00393J crossref_primary_10_1002_adhm_202002105 crossref_primary_10_34133_cbsystems_0172 crossref_primary_10_1039_D0TC02539A crossref_primary_10_1021_acs_macromol_4c01910 crossref_primary_10_1002_admt_201900856 crossref_primary_10_1021_acsami_0c12362 crossref_primary_10_3390_polym15183852 crossref_primary_10_1016_j_matt_2020_03_020 crossref_primary_10_1002_smtd_202402164 crossref_primary_10_3390_ma17133265 crossref_primary_10_1002_smm2_1068 crossref_primary_10_37188_lam_2021_004 crossref_primary_10_1016_j_cej_2020_124685 crossref_primary_10_1039_D1TA01892B crossref_primary_10_1021_acsnano_0c05932 crossref_primary_10_1002_adma_202002800 crossref_primary_10_1002_adma_202000619 crossref_primary_10_1016_j_sna_2021_113139 crossref_primary_10_1002_ange_202303446 crossref_primary_10_1038_s41467_022_32126_1 crossref_primary_10_1002_mame_202000013 crossref_primary_10_1002_adfm_201905968 crossref_primary_10_3390_polym15224408 crossref_primary_10_1016_j_giant_2022_100136 crossref_primary_10_56767_jfpe_2024_3_2_145 crossref_primary_10_1002_admt_202001075 crossref_primary_10_1002_adma_202300937 crossref_primary_10_1002_inf2_12500 crossref_primary_10_1002_aelm_202100881 crossref_primary_10_1016_j_enmf_2024_06_001 crossref_primary_10_1007_s12274_022_4551_8 crossref_primary_10_1016_j_cej_2023_145891 crossref_primary_10_1007_s10854_022_09392_2 crossref_primary_10_1093_nsr_nwac093 crossref_primary_10_1109_JPROC_2019_2909666 crossref_primary_10_1021_acsami_9b07520 crossref_primary_10_1002_adfm_202313842 crossref_primary_10_1002_adma_201904765 crossref_primary_10_1002_adma_201902343 crossref_primary_10_1016_j_polymer_2023_126514 crossref_primary_10_1002_adfm_202211150 crossref_primary_10_1016_j_cej_2021_131289 crossref_primary_10_1007_s11432_021_3235_7 crossref_primary_10_1002_adfm_202101303 crossref_primary_10_1002_adma_201901493 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1002_adma_202004190 crossref_primary_10_1039_C9TA09158K crossref_primary_10_1038_s41467_020_15949_8 crossref_primary_10_1126_science_abh4357 crossref_primary_10_1080_00914037_2022_2063287 crossref_primary_10_1002_advs_202004050 crossref_primary_10_1038_s41528_022_00175_7 crossref_primary_10_1002_adsr_202200066 crossref_primary_10_1002_adfm_202214479 crossref_primary_10_1016_j_eurpolymj_2021_110769 crossref_primary_10_1038_s41928_019_0242_1 crossref_primary_10_1039_C9TA03982A crossref_primary_10_1007_s12274_021_3476_y crossref_primary_10_1039_D0MH01656J crossref_primary_10_1016_j_measurement_2024_115482 crossref_primary_10_1073_pnas_2300953120 crossref_primary_10_1016_j_jpowsour_2020_229394 crossref_primary_10_1016_j_matt_2020_01_021 crossref_primary_10_1016_j_cej_2020_125330 crossref_primary_10_1021_acsami_4c06728 crossref_primary_10_1002_ange_202212512 crossref_primary_10_1016_j_cej_2023_142350 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1021_acsami_9b17354 crossref_primary_10_1002_adma_202003088 crossref_primary_10_1002_admi_201801936 crossref_primary_10_1038_s43586_023_00278_z crossref_primary_10_1021_acsapm_3c01308 crossref_primary_10_1002_admt_202001273 crossref_primary_10_1016_j_jallcom_2020_155142 crossref_primary_10_1039_D1TA05483J crossref_primary_10_1088_2058_8585_abad89 crossref_primary_10_1021_acsapm_0c01442 crossref_primary_10_1016_j_xpro_2023_102045 crossref_primary_10_1021_acs_iecr_9b01405 crossref_primary_10_1021_acsnano_9b00160 crossref_primary_10_1002_mame_202000287 crossref_primary_10_1039_D3QM00176H crossref_primary_10_1021_acsami_0c17669 crossref_primary_10_1002_adfm_202005200 crossref_primary_10_1038_s41467_020_15709_8 crossref_primary_10_1021_jacs_9b05740 crossref_primary_10_1039_D3PY01098H crossref_primary_10_1016_j_cej_2020_125593 crossref_primary_10_1038_s41586_022_05579_z crossref_primary_10_1002_adem_202100379 crossref_primary_10_1021_acsami_0c04359 crossref_primary_10_1016_j_mser_2021_100627 crossref_primary_10_1021_acsaelm_1c01212 crossref_primary_10_1021_acsami_2c03596 crossref_primary_10_1016_j_mser_2021_100629 crossref_primary_10_1002_smll_202101383 crossref_primary_10_3390_nano11030716 crossref_primary_10_1002_adhm_202302460 crossref_primary_10_1002_aisy_202100280 crossref_primary_10_1002_adfm_202213382 crossref_primary_10_1021_acsami_8b20303 crossref_primary_10_1039_D3TC03661H crossref_primary_10_1021_acssensors_3c01835 crossref_primary_10_1002_adma_202204159 crossref_primary_10_1021_acsami_0c11986 crossref_primary_10_1002_adma_202207437 crossref_primary_10_1021_acsaelm_0c00724 crossref_primary_10_1016_j_dyepig_2021_109858 crossref_primary_10_1039_C9NR09283H crossref_primary_10_1021_acsaelm_1c00025 crossref_primary_10_3390_mi15010066 crossref_primary_10_1016_j_mser_2021_100640 crossref_primary_10_1021_acsaelm_3c01414 crossref_primary_10_1007_s40097_021_00436_3 crossref_primary_10_1002_adom_201801283 crossref_primary_10_1021_acsami_0c05083 crossref_primary_10_1002_eom2_12093 crossref_primary_10_1016_j_cej_2024_148911 crossref_primary_10_1002_mame_202000527 crossref_primary_10_1016_j_compscitech_2020_108446 crossref_primary_10_1039_D4NR03464C crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_1021_acsanm_1c03414 crossref_primary_10_1002_adma_202500073 crossref_primary_10_1002_adfm_201905426 crossref_primary_10_3389_fimmu_2023_1167301 crossref_primary_10_1002_mame_202400468 crossref_primary_10_1021_acsaelm_1c00044 crossref_primary_10_1126_sciadv_ads1301 crossref_primary_10_1002_advs_202206665 crossref_primary_10_1039_D1TA03729C crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1002_aelm_202000618 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1039_D2NH00158F crossref_primary_10_1016_j_apmt_2023_101764 crossref_primary_10_1002_adma_202401219 crossref_primary_10_1021_acsami_8b22443 crossref_primary_10_1038_s41377_020_00402_8 crossref_primary_10_1016_j_matdes_2020_109178 crossref_primary_10_1002_admt_202301226 crossref_primary_10_1038_s41528_020_0077_x crossref_primary_10_1021_acsami_9b04425 crossref_primary_10_1016_j_cej_2021_130121 crossref_primary_10_1021_acs_nanolett_9b05271 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1021_acsami_2c17676 crossref_primary_10_1021_acsami_2c14162 crossref_primary_10_1002_adem_202301810 crossref_primary_10_1039_D0RA04431H crossref_primary_10_1016_j_matt_2023_05_042 crossref_primary_10_1002_adma_202008267 crossref_primary_10_1007_s10853_019_04271_4 crossref_primary_10_1557_s43577_024_00809_3 crossref_primary_10_1007_s40820_020_00529_8 crossref_primary_10_1002_viw2_21 crossref_primary_10_1063_1_5063657 crossref_primary_10_1002_admt_201800628 crossref_primary_10_1039_D2NR05969J crossref_primary_10_1016_j_nanoen_2021_106181 crossref_primary_10_1002_batt_202300161 crossref_primary_10_1016_j_apsusc_2020_146018 crossref_primary_10_1002_VIW_20200172 crossref_primary_10_1002_ange_202318856 crossref_primary_10_1002_adfm_202200457 crossref_primary_10_1039_D0RA00327A crossref_primary_10_1002_cnma_202000361 crossref_primary_10_1088_1361_6528_ac5ee6 crossref_primary_10_1016_j_ssi_2023_116230 crossref_primary_10_1002_anie_201913893 crossref_primary_10_1021_accountsmr_1c00002 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1002_adfm_202104288 crossref_primary_10_1002_adma_202002706 crossref_primary_10_1016_j_ijbiomac_2024_130482 crossref_primary_10_1021_acsnano_0c00187 crossref_primary_10_1021_acsnano_9b02858 crossref_primary_10_1021_acsmaterialslett_1c00216 crossref_primary_10_1039_D0TC01011A crossref_primary_10_1002_admt_202000327 crossref_primary_10_1002_aisy_201900090 crossref_primary_10_1007_s42114_021_00303_3 crossref_primary_10_1109_JSTQE_2023_3308770 crossref_primary_10_3390_mi13081247 crossref_primary_10_29026_oea_2022_210131 crossref_primary_10_1016_j_cej_2019_122271 crossref_primary_10_1038_s41427_019_0122_1 crossref_primary_10_1002_aisy_202200415 crossref_primary_10_1021_acsnano_2c03414 crossref_primary_10_1002_adma_202100047 crossref_primary_10_1002_gch2_201900079 crossref_primary_10_1021_acsnano_1c07645 crossref_primary_10_1039_C9CC07520H crossref_primary_10_1002_anie_202200705 crossref_primary_10_1016_j_cej_2021_134094 crossref_primary_10_1039_C9TC03257F crossref_primary_10_1002_macp_202000291 crossref_primary_10_1021_acssuschemeng_9b00579 crossref_primary_10_1002_marc_202000444 crossref_primary_10_1016_j_cej_2019_123336 crossref_primary_10_1021_acsami_1c20271 crossref_primary_10_1016_j_compscitech_2019_107773 crossref_primary_10_1002_ange_201913893 crossref_primary_10_1038_s41467_020_17298_y crossref_primary_10_1103_PhysRevApplied_12_044074 crossref_primary_10_1038_s41467_024_47718_2 crossref_primary_10_1016_j_sna_2023_114574 crossref_primary_10_3390_ma15051661 crossref_primary_10_1016_j_cej_2023_142700 crossref_primary_10_1038_s41598_019_44420_y crossref_primary_10_1016_j_cej_2023_142945 crossref_primary_10_1016_j_cej_2024_158573 crossref_primary_10_1039_D1MH01199E crossref_primary_10_1063_5_0020429 crossref_primary_10_1002_adfm_201909652 crossref_primary_10_1016_j_cej_2020_127023 crossref_primary_10_1002_adma_201901958 crossref_primary_10_1002_inf2_12060 crossref_primary_10_1021_acs_nanolett_1c03618 crossref_primary_10_1016_j_nanoen_2023_108331 crossref_primary_10_1002_smtd_202400163 crossref_primary_10_1088_1361_6528_abed73 crossref_primary_10_1002_sdtp_14872 crossref_primary_10_1021_acsami_0c09045 crossref_primary_10_1039_D4NR04792C crossref_primary_10_1115_1_4044088 crossref_primary_10_1557_mrs_2019_183 crossref_primary_10_1002_adma_202209673 crossref_primary_10_1002_aisy_201900040 crossref_primary_10_1126_sciadv_abd0202 crossref_primary_10_1021_acsnano_3c03212 crossref_primary_10_1002_adfm_202010155 crossref_primary_10_1021_acsami_2c21595 crossref_primary_10_1088_1361_6501_ad214c crossref_primary_10_1016_j_cej_2021_131846 crossref_primary_10_1038_s41467_021_23207_8 crossref_primary_10_1039_D0TA10375F crossref_primary_10_1038_s41598_022_16156_9 crossref_primary_10_1016_j_cej_2024_154190 crossref_primary_10_1088_1674_4926_41_4_041601 crossref_primary_10_1002_adma_202207006 crossref_primary_10_3390_nano12162762 crossref_primary_10_1002_admt_202000754 crossref_primary_10_3390_s19102369 crossref_primary_10_1080_10584587_2023_2234558 crossref_primary_10_1002_admt_202101572 crossref_primary_10_1002_adma_202408456 crossref_primary_10_1039_C9TA05102C crossref_primary_10_1007_s10118_024_3178_5 crossref_primary_10_1016_j_matchemphys_2021_124642 crossref_primary_10_1063_5_0228497 crossref_primary_10_1038_s41565_022_01160_x crossref_primary_10_1038_s41528_021_00119_7 crossref_primary_10_1002_admt_202000759 crossref_primary_10_1002_inf2_12093 crossref_primary_10_1016_j_sna_2024_115922 crossref_primary_10_1002_adma_201900663 crossref_primary_10_1002_admt_202000984 crossref_primary_10_34133_2022_9814767 crossref_primary_10_1038_s41598_020_74337_w crossref_primary_10_1038_s41563_023_01529_w crossref_primary_10_1002_macp_201900361 crossref_primary_10_1002_adma_202200682 crossref_primary_10_1038_s41467_022_28027_y crossref_primary_10_1039_D3MH00358B crossref_primary_10_1016_j_nanoen_2020_104546 crossref_primary_10_1016_j_cossms_2022_101042 crossref_primary_10_1016_j_cej_2023_145177 crossref_primary_10_1021_acs_nanolett_9b01055 crossref_primary_10_1002_adfm_202104686 crossref_primary_10_1021_acsnano_9b08323 crossref_primary_10_1002_adma_202307810 crossref_primary_10_1016_j_nantod_2024_102544 crossref_primary_10_1002_smll_202206938 crossref_primary_10_1021_acsmaterialslett_3c00800 crossref_primary_10_1021_acsami_0c12415 crossref_primary_10_1021_acs_macromol_0c01665 crossref_primary_10_1039_D3QM00109A crossref_primary_10_1021_acsami_1c08360 crossref_primary_10_1002_aisy_202000183 crossref_primary_10_1002_rpm_20240019 crossref_primary_10_1088_2631_7990_ad8735 crossref_primary_10_1002_macp_202000073 crossref_primary_10_1016_j_nanoen_2022_107392 crossref_primary_10_1002_adhm_202100646 crossref_primary_10_1021_acsami_1c14816 crossref_primary_10_1016_j_device_2024_100525 crossref_primary_10_1016_j_trechm_2020_03_005 crossref_primary_10_1039_D0CS00333F crossref_primary_10_1038_s41467_021_21577_7 crossref_primary_10_3390_ma15217637 crossref_primary_10_3389_fchem_2020_585569 crossref_primary_10_1142_S1793292023500017 crossref_primary_10_1039_C9TA09170J crossref_primary_10_1016_j_mtchem_2022_100855 crossref_primary_10_1002_adma_202105338 |
Cites_doi | 10.1038/nature16521 10.1038/nature12314 10.1126/science.aan5980 10.1126/science.aac5082 10.1002/pat.3290 10.1126/science.1206157 10.1038/nmat4671 10.1038/nature20102 10.1021/nn506610p 10.1002/adfm.201401758 10.1038/ncomms10310 10.1038/nature06669 10.1038/nchem.2492 10.1126/sciadv.1601465 10.1038/nmat4904 10.1038/ncomms12028 10.1038/nature11409 10.1039/c3cs60109a 10.1038/nnano.2011.184 10.1126/sciadv.aaq0508 10.1038/nmat4635 10.1038/nnano.2012.206 10.1073/pnas.1015862108 10.1038/nphoton.2013.242 10.1038/nmat2971 10.1002/adma.201305682 10.1002/adma.201706846 10.1002/adma.201203921 10.1021/nn1028532 10.1002/adma.201504031 10.1126/scirobotics.aai7529 10.1002/adma.201504104 10.1126/science.aah4496 10.1002/adma.201301069 10.1021/cr900181u 10.1038/nnano.2014.38 10.1021/ma002075t |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Copyright Nature Publishing Group Nov 2018 |
Copyright_xml | – notice: The Author(s) 2018 – notice: Copyright Nature Publishing Group Nov 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-018-0244-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 1065 |
ExternalDocumentID | 30127474 10_1038_s41565_018_0244_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS PUEGO 7X8 |
ID | FETCH-LOGICAL-c438t-2a176fb4feec06fd13263b0df05981074b8450ce7321848e631491cfae50e0e83 |
IEDL.DBID | 8FG |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Sep 05 06:46:46 EDT 2025 Tue Sep 23 02:41:54 EDT 2025 Mon Jul 21 06:02:17 EDT 2025 Tue Jul 01 01:56:28 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-2a176fb4feec06fd13263b0df05981074b8450ce7321848e631491cfae50e0e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3639-9741 0000-0003-2260-9960 0000-0002-9495-3165 0000-0002-0972-1715 0000-0002-2794-0663 |
PMID | 30127474 |
PQID | 2130052965 |
PQPubID | 546299 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2091241685 proquest_journals_2130052965 pubmed_primary_30127474 crossref_citationtrail_10_1038_s41565_018_0244_6 crossref_primary_10_1038_s41565_018_0244_6 springer_journals_10_1038_s41565_018_0244_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Larson (CR36) 2016; 351 Xu (CR17) 2017; 355 Chortos, Liu, Bao (CR6) 2016; 15 Yu (CR5) 2016; 15 Holten-Andersen (CR19) 2011; 108 Yuan (CR20) 2014; 25 Yang (CR37) 2016; 28 Kim (CR1) 2011; 333 Huang (CR22) 2015; 6 Ma (CR9) 2017; 357 Cordier, Tournilhac, Soulie-Ziakovic, Leibler (CR28) 2008; 451 Kang (CR31) 2018; 30 Sun (CR13) 2016; 489 Kaltenbrunner (CR3) 2013; 499 Yang, Urban (CR18) 2013; 42 Palleau (CR30) 2013; 25 Savagatrup (CR15) 2015; 25 Oh (CR8) 2016; 539 Liang, Li, Niu, Yu, Pei (CR10) 2013; 7 Li (CR24) 2014; 8 Gao (CR4) 2016; 529 Bandodkar (CR26) 2016; 2 Yuk, Zhang, Parada, Liu, Zhao (CR14) 2016; 7 Kim (CR7) 2011; 10 Zhao, O’brien, Li, Shepherd (CR16) 2016; 1 Huynh, Haick (CR27) 2016; 28 Wang (CR25) 2014; 26 Gong (CR23) 2013; 25 Wallace (CR35) 2001; 34 Li (CR21) 2016; 8 Lipomi (CR34) 2011; 6 Matsuhisa (CR11) 2017; 16 Kim (CR33) 2011; 5 Park (CR12) 2012; 7 Son (CR2) 2014; 9 Zou (CR29) 2018; 4 De Greef (CR32) 2009; 109 S Savagatrup (244_CR15) 2015; 25 J Liang (244_CR10) 2013; 7 DJ Lipomi (244_CR34) 2011; 6 B Yu (244_CR5) 2016; 15 J Li (244_CR24) 2014; 8 CH Li (244_CR21) 2016; 8 Y Yang (244_CR18) 2013; 42 J Kang (244_CR31) 2018; 30 CH Yang (244_CR37) 2016; 28 D Son (244_CR2) 2014; 9 R Ma (244_CR9) 2017; 357 M Park (244_CR12) 2012; 7 H Wang (244_CR25) 2014; 26 Z Zou (244_CR29) 2018; 4 C Larson (244_CR36) 2016; 351 JY Oh (244_CR8) 2016; 539 N Matsuhisa (244_CR11) 2017; 16 TFA Greef De (244_CR32) 2009; 109 JY Sun (244_CR13) 2016; 489 C Gong (244_CR23) 2013; 25 TP Huynh (244_CR27) 2016; 28 M Kaltenbrunner (244_CR3) 2013; 499 H Yuk (244_CR14) 2016; 7 J Xu (244_CR17) 2017; 355 L Yuan (244_CR20) 2014; 25 AJ Bandodkar (244_CR26) 2016; 2 DH Kim (244_CR1) 2011; 333 N Holten-Andersen (244_CR19) 2011; 108 A Chortos (244_CR6) 2016; 15 Y Huang (244_CR22) 2015; 6 SM Kim (244_CR33) 2011; 5 H Zhao (244_CR16) 2016; 1 WE Wallace (244_CR35) 2001; 34 P Cordier (244_CR28) 2008; 451 E Palleau (244_CR30) 2013; 25 W Gao (244_CR4) 2016; 529 DH Kim (244_CR7) 2011; 10 |
References_xml | – volume: 529 start-page: 509 year: 2016 end-page: 514 ident: CR4 article-title: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis publication-title: Nature doi: 10.1038/nature16521 – volume: 499 start-page: 458 year: 2013 end-page: 463 ident: CR3 article-title: An ultra-lightweight design for imperceptible plastic electronics publication-title: Nature doi: 10.1038/nature12314 – volume: 357 start-page: 1130 year: 2017 end-page: 1134 ident: CR9 article-title: Highly efficient electrocaloric cooling with electrostatic actuation publication-title: Science doi: 10.1126/science.aan5980 – volume: 351 start-page: 1071 year: 2016 end-page: 1074 ident: CR36 article-title: Highly stretchable electroluminescent skin for optical signaling and tactile sensing publication-title: Science doi: 10.1126/science.aac5082 – volume: 25 start-page: 752 year: 2014 end-page: 759 ident: CR20 article-title: Poly(phenylene oxide) modified cyanate resin for self-healing publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3290 – volume: 333 start-page: 838 year: 2011 end-page: 843 ident: CR1 article-title: Epidermal electronics publication-title: Science doi: 10.1126/science.1206157 – volume: 15 start-page: 937 year: 2016 end-page: 950 ident: CR6 article-title: Pursuing prosthetic electronic skin publication-title: Nat. Mater. doi: 10.1038/nmat4671 – volume: 539 start-page: 411 year: 2016 end-page: 415 ident: CR8 article-title: Intrinsically stretchable and healable semiconducting polymer for organic transistors publication-title: Nature doi: 10.1038/nature20102 – volume: 8 start-page: 12874 year: 2014 end-page: 12882 ident: CR24 article-title: Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide Diels–Alder cycloaddition polymer publication-title: ACS Nano doi: 10.1021/nn506610p – volume: 25 start-page: 427 year: 2015 end-page: 436 ident: CR15 article-title: Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401758 – volume: 6 year: 2015 ident: CR22 article-title: A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte publication-title: Nat. Commun. doi: 10.1038/ncomms10310 – volume: 451 start-page: 977 year: 2008 end-page: 980 ident: CR28 article-title: Self-healing and thermoreversible rubber from supramolecular assembly publication-title: Nature doi: 10.1038/nature06669 – volume: 8 start-page: 618 year: 2016 end-page: 624 ident: CR21 article-title: A highly stretchable autonomous self-healing elastomer publication-title: Nature Chem. doi: 10.1038/nchem.2492 – volume: 2 start-page: e1601465 year: 2016 ident: CR26 article-title: All-printed magnetically self-healing electrochemical devices publication-title: Sci. Adv. doi: 10.1126/sciadv.1601465 – volume: 16 start-page: 834 year: 2017 end-page: 840 ident: CR11 article-title: Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes publication-title: Nat. Mater. doi: 10.1038/nmat4904 – volume: 7 year: 2016 ident: CR14 article-title: Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures publication-title: Nat. Commun. doi: 10.1038/ncomms12028 – volume: 489 start-page: 133 year: 2016 end-page: 136 ident: CR13 article-title: Highly stretchable and tough hydrogels publication-title: Nature doi: 10.1038/nature11409 – volume: 42 start-page: 7446 year: 2013 end-page: 7467 ident: CR18 article-title: Self-healing polymeric materials publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60109a – volume: 6 start-page: 788 year: 2011 end-page: 792 ident: CR34 article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nat. Nanotech. doi: 10.1038/nnano.2011.184 – volume: 4 start-page: eaaq0508 year: 2018 ident: CR29 article-title: Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0508 – volume: 15 start-page: 911 year: 2016 end-page: 918 ident: CR5 article-title: An elastic second skin publication-title: Nat. Mater. doi: 10.1038/nmat4635 – volume: 7 start-page: 803 year: 2012 end-page: 809 ident: CR12 article-title: Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.206 – volume: 108 start-page: 2651 year: 2011 end-page: 2655 ident: CR19 article-title: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015862108 – volume: 7 start-page: 817 year: 2013 end-page: 824 ident: CR10 article-title: Elastomeric polymer light-emitting devices and displays publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.242 – volume: 10 start-page: 316 year: 2011 end-page: 323 ident: CR7 article-title: Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy publication-title: Nat. Mater. doi: 10.1038/nmat2971 – volume: 26 start-page: 3638 year: 2014 end-page: 3643 ident: CR25 article-title: A mechanically and electrically self-healing supercapacitor publication-title: Adv. Mater. doi: 10.1002/adma.201305682 – volume: 30 start-page: 1706846 year: 2018 ident: CR31 article-title: Tough and water-insensitive self-healing elastomer for robust electronic skin publication-title: Adv. Mater. doi: 10.1002/adma.201706846 – volume: 25 start-page: 1589 year: 2013 end-page: 1592 ident: CR30 article-title: Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics publication-title: Adv. Mater. doi: 10.1002/adma.201203921 – volume: 5 start-page: 1236 year: 2011 end-page: 1242 ident: CR33 article-title: Role of anions in the AuCl -doping of carbon nanotubes publication-title: ACS Nano doi: 10.1021/nn1028532 – volume: 28 start-page: 4480 year: 2016 end-page: 4484 ident: CR37 article-title: Electroluminescence of giant stretchability publication-title: Adv. Mater. doi: 10.1002/adma.201504031 – volume: 1 start-page: eaai7529 year: 2016 ident: CR16 article-title: Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides publication-title: Sci. Robot. doi: 10.1126/scirobotics.aai7529 – volume: 28 start-page: 138 year: 2016 end-page: 143 ident: CR27 article-title: Self-healing, fully functional, and multiparametric flexible sensing platform publication-title: Adv. Mater. doi: 10.1002/adma.201504104 – volume: 355 start-page: 59 year: 2017 end-page: 64 ident: CR17 article-title: Highly stretchable polymer semiconductor films through the nanoconfinement effect publication-title: Science doi: 10.1126/science.aah4496 – volume: 25 start-page: 4186 year: 2013 end-page: 4191 ident: CR23 article-title: A healable, semitransparent silver nanowire–polymer composite conductor publication-title: Adv. Mater. doi: 10.1002/adma.201301069 – volume: 109 start-page: 5687 year: 2009 end-page: 5754 ident: CR32 article-title: Supramolecular polymerization publication-title: Chem. Rev. doi: 10.1021/cr900181u – volume: 9 start-page: 397 year: 2014 end-page: 404 ident: CR2 article-title: Multifunctional wearable devices for diagnosis and therapy of movement disorders publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.38 – volume: 34 start-page: 5081 year: 2001 end-page: 5082 ident: CR35 article-title: Polymer chain relaxation: surface outpaces bulk publication-title: Macromolecules doi: 10.1021/ma002075t – volume: 8 start-page: 12874 year: 2014 ident: 244_CR24 publication-title: ACS Nano doi: 10.1021/nn506610p – volume: 4 start-page: eaaq0508 year: 2018 ident: 244_CR29 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0508 – volume: 15 start-page: 911 year: 2016 ident: 244_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4635 – volume: 108 start-page: 2651 year: 2011 ident: 244_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015862108 – volume: 357 start-page: 1130 year: 2017 ident: 244_CR9 publication-title: Science doi: 10.1126/science.aan5980 – volume: 25 start-page: 752 year: 2014 ident: 244_CR20 publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3290 – volume: 26 start-page: 3638 year: 2014 ident: 244_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201305682 – volume: 529 start-page: 509 year: 2016 ident: 244_CR4 publication-title: Nature doi: 10.1038/nature16521 – volume: 351 start-page: 1071 year: 2016 ident: 244_CR36 publication-title: Science doi: 10.1126/science.aac5082 – volume: 6 year: 2015 ident: 244_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms10310 – volume: 25 start-page: 1589 year: 2013 ident: 244_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201203921 – volume: 489 start-page: 133 year: 2016 ident: 244_CR13 publication-title: Nature doi: 10.1038/nature11409 – volume: 28 start-page: 4480 year: 2016 ident: 244_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201504031 – volume: 1 start-page: eaai7529 year: 2016 ident: 244_CR16 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aai7529 – volume: 451 start-page: 977 year: 2008 ident: 244_CR28 publication-title: Nature doi: 10.1038/nature06669 – volume: 15 start-page: 937 year: 2016 ident: 244_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat4671 – volume: 28 start-page: 138 year: 2016 ident: 244_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201504104 – volume: 6 start-page: 788 year: 2011 ident: 244_CR34 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2011.184 – volume: 25 start-page: 4186 year: 2013 ident: 244_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201301069 – volume: 34 start-page: 5081 year: 2001 ident: 244_CR35 publication-title: Macromolecules doi: 10.1021/ma002075t – volume: 9 start-page: 397 year: 2014 ident: 244_CR2 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2014.38 – volume: 42 start-page: 7446 year: 2013 ident: 244_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60109a – volume: 30 start-page: 1706846 year: 2018 ident: 244_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201706846 – volume: 10 start-page: 316 year: 2011 ident: 244_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat2971 – volume: 499 start-page: 458 year: 2013 ident: 244_CR3 publication-title: Nature doi: 10.1038/nature12314 – volume: 2 start-page: e1601465 year: 2016 ident: 244_CR26 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601465 – volume: 7 start-page: 803 year: 2012 ident: 244_CR12 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2012.206 – volume: 8 start-page: 618 year: 2016 ident: 244_CR21 publication-title: Nature Chem. doi: 10.1038/nchem.2492 – volume: 16 start-page: 834 year: 2017 ident: 244_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat4904 – volume: 109 start-page: 5687 year: 2009 ident: 244_CR32 publication-title: Chem. Rev. doi: 10.1021/cr900181u – volume: 5 start-page: 1236 year: 2011 ident: 244_CR33 publication-title: ACS Nano doi: 10.1021/nn1028532 – volume: 355 start-page: 59 year: 2017 ident: 244_CR17 publication-title: Science doi: 10.1126/science.aah4496 – volume: 7 start-page: 817 year: 2013 ident: 244_CR10 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.242 – volume: 25 start-page: 427 year: 2015 ident: 244_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401758 – volume: 7 year: 2016 ident: 244_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms12028 – volume: 539 start-page: 411 year: 2016 ident: 244_CR8 publication-title: Nature doi: 10.1038/nature20102 – volume: 333 start-page: 838 year: 2011 ident: 244_CR1 publication-title: Science doi: 10.1126/science.1206157 |
SSID | ssj0052924 |
Score | 2.7081697 |
Snippet | Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1057 |
SubjectTerms | 639/301/1005/1007 639/301/357/1016 639/301/357/73 639/925 Chemistry and Materials Science Conducting polymers Crosslinking Deformation wear Electric Conductivity Electrodes Electronic devices Electronics Electronics - instrumentation Electronics - methods Formability Human motion Internet of Things Materials Science Nanostructures Nanotechnology Nanotechnology and Microengineering Organic chemistry Polymers Reconstruction Self healing materials Signal monitoring Skin Stretchability Substrates |
Title | An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network |
URI | https://link.springer.com/article/10.1038/s41565-018-0244-6 https://www.ncbi.nlm.nih.gov/pubmed/30127474 https://www.proquest.com/docview/2130052965 https://www.proquest.com/docview/2091241685 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB50fbl7EPV-uLouObinO4Jtk7bZJ1FxFeHkOE7Yt5K2CYiSqlVf_dedSdruHaKv7bQp_TKZbzKTGYDvWpcy13HMc40uikyrDFXKzngZWSt0jOrnS2z8usjOLuX5Il10G25tl1bZr4l-oa6bivbI9xOKu1CQMD24vePUNYqiq10LjVVYixO0tXRSfH7ar8QoHZra5lJxdMXyPqop1H5LjgulrSmOVkry7H-79IpsvgqUevsz34D1jjiyw4D0JqwYtwUf_ykn-AmeDx0byj_UrDU3lhMRpNNRbNnvhrXXV46FEs7M6tI3CkL5pyvN6tCgnnk_eagtyxrLNHPaNeHS4z2KowDVisWRmQu55J_hcn7y9_iMdw0WeCWFeuAJgWFLaY2poszW6Jlmooxqi5xLUaZmqWQaVSYX5Agqkwn0p-LKapNGJjJKfIGRa5zZBjYztTCJ1H5XRCIUKlUlihukPCoRszFE_e8tqq76ODXBuCl8FFyoIiBSICIFIVJkY_gxPHIbSm-8JzzpMSs6LWyL5ZwZw7fhNuoPBUW0M80jyiBhQhaTKZT5GrAeRhMUl5e5HMPPHvzly9_8lJ33P2UXPiQ07fx5xgmMEDezh8TmoZzCar7Ip34OT2Ht6OTi958XhF310Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IFqgXSjFlcoFZDUbO4n3UKECrbavFUKt1JvrJLZUUZxCWlBP_DN-GzPOY0EVvfWaTBzL48c3nplvANaNyWVmRiOeGTRRZFKkuKTcmOeRc8KMcPkFio3DaTo5lnsnyckc_O5yYSisstsTw0ZdVgXdkW_E5HchJ2Hy7uIbp6pR5F3tSmiYtrRCuRkoxtrEjn17_RNNuHpz9yPq-3Uc72wffZjwtsoAL6RQlzymHrlcOmuLKHUlmmepyKPSIfBQFK6YK5lEhc0EWUPKpgKNilHhjE0iG1klsN17MC_pAmUA8--3p58-d2cB9rcpq5tJxdEYzDq_qlAbNZlOFDinOJ6Tkqf_now34O4NV204AXcew6MWurKtZq4twJz1i_DwL0LDJ_Bry7OegKJktT13nKAo5WexWcUdVn8586whkWbO5KFUEcr_ODOsvPbmK4oES71nt2WVY4Z546vm0dV3FEcBYqvFPzPfRLM_heM7GfxnMPCVt8vAxrYUNpYm3MtIBF4qUTmKWwRdKhbjIUTd8Oqi5T-nMhznOvjhhdKNRjRqRJNGdDqEN_0nFw35x23CK53OdLsP1Ho2a4ew1r_GFUxuGeNtdYUyCNkQR6UKZZYaXfd_ExQZIDM5hLed8meN_7crz2_vyiu4Pzk6PNAHu9P9F_AgpikYsitXYIA6tC8RZl3mq-1cZnB618vnDzRaNdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9VAEJ4gJEYPRhT1KeKayEWzeX3dbbvvQAwCLyDyQgwk3NZtu5sQYIsWNJz8__yrnNn-eBgiN67ttN10dnbm25n9BuCdMbnMzGjEM4MQRSZFiiblxjyPnBNmhOYXKDb2pun2ofx8lBzNwZ_uLAyVVXZrYlioy6qgPfJhTHkXShImQ9eWRexvTj6ef-fUQYoyrV07DdO2WSjXAt1Ye8hj1179QjhXr-1sou5X43iydbCxzduOA7yQQl3wmEbncumsLaLUlQjVUpFHpcMgRFHpYq5kEhU2E4SMlE0FAoxR4YxNIhtZJfC992AhQ6-PQHDh09Z0_2vnF3DsTYvdTCqOwDDrcqxCDWuCUVREpzj6TMnTf73kjdD3Rto2eMPJY3jUhrFsvZl3izBn_RN4eI3c8Cn8XvesJ6MoWW1PHaewlM5qsVn3HVafHHvWEEozZ_LQtgjlfx4bVl55c4YiAbX3TLescswwb3zVXLr8geIoQMy1-GXmm8r2JTi8k5__DOZ95e0LYGNbChtLE_ZoJAZhKlE5ilsMwFQsxgOIut-ri5YLnVpynOqQkxdKNxrRqBFNGtHpAN73j5w3RCC3CS93OtPtmlDr2QwewNv-NlozpWiMt9UlymD4hjFVqlDmeaPr_muCqgRkJgfwoVP-7OX_HcrL24fyBu6jGekvO9PdV_AgphkYDlouwzyq0L7GiOsiX2mnMoNvd209fwH3EDoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+self-healable+electronic+skin+system+fabricated+via+dynamic+reconstruction+of+a+nanostructured+conducting+network&rft.jtitle=Nature+nanotechnology&rft.au=Son%2C+Donghee&rft.au=Kang%2C+Jiheong&rft.au=Vardoulis%2C+Orestis&rft.au=Kim%2C+Yeongin&rft.date=2018-11-01&rft.issn=1748-3395&rft.eissn=1748-3395&rft.volume=13&rft.issue=11&rft.spage=1057&rft_id=info:doi/10.1038%2Fs41565-018-0244-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |