An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network
Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the ‘Internet of Things’. Such devices need to be ultrathin to achieve sea...
Saved in:
Published in | Nature nanotechnology Vol. 13; no. 11; pp. 1057 - 1065 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1748-3387 1748-3395 1748-3395 |
DOI | 10.1038/s41565-018-0244-6 |
Cover
Summary: | Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the ‘Internet of Things’. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics.
Self-reconstruction of conducting nanostructures assisted by a dynamically crosslinked polymer network enables the fabrication of autonomous self-healable and stretchable multi-component electronic skin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1748-3387 1748-3395 1748-3395 |
DOI: | 10.1038/s41565-018-0244-6 |