Effects of Panaxadiol Saponins Component as A New Chinese Patent Medicine on Proliferation, Differentiation and Corresponding Gene Expression Profile of Megakaryocytes

Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryocytes. Methods: Bone marrow culture of colony forming assay of megakaryocytic progenito...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of integrative medicine Vol. 22; no. 1; pp. 28 - 35
Main Author 温伟为 孙馨 庄海峰 林筱洁 郑智茵 高瑞兰 尹利明
Format Journal Article
LanguageEnglish
Published Beijing Chinese Association of Traditional and Western Medicine 01.01.2016
Subjects
Online AccessGet full text
ISSN1672-0415
1993-0402
DOI10.1007/s11655-015-1970-3

Cover

More Information
Summary:Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryocytes. Methods: Bone marrow culture of colony forming assay of megakaryocytic progenitor cells (CFU-MK) was observed for the promoting proliferation mediated by PDS-C, and differentiation of megakaryocytic blasts caused by PDS-C was analyzed with flow cytometry in CHRF-288 and Meg-01 cells, as well as proliferation, differentiation-related genes expression profile and protein expression levels were detected by human gone expression microarray and western blot. Results: In response to PDS-C 10, 20 and 50 mg/L, CFU-MK from 10 human bone marrow samples was increased by 28.9± 2.7%, 41.0% ± 3.2% and 40.5% ± 2.6% over untreated control, respectively (P〈0.01, each). Flow cytometry analysis showed that PDS-C treated CHRF-288 cells and Meg-01 cells significantly increased in CD42b, CD41, TSP and CD36 positive ratio, respectively. PDS-C induced 29 genes up-regulated more than two-fold commonly in both cells detected by human expression microarray representing 4000 known genes. The protein expression levels of ZNF91, c-Fos, BTF3a, GATA-1, RGS2, NDRG2 and RUNX1 were increased with western blot in correspond to microarray results. Conclusion: PDS-C as an effective component for hematopoiesis, play the role to enhance proliferation and differentiation of megakaryocytes, also up-regulated expression of proliferation, differentiation-related genes and proteins in vitro. KEYWORDS panaxadiol saponins, megakaryocyte, gone expression profile, proliferation, differentiation
Bibliography:WEN Wei-wei , SUN Xin , ZHUANG Hai-feng ,LIN Xiao-jie, ZHENG Zhi-yin, GAO Rui-lan ,YIN Li-ming (1. The Third People's Hospital of Hangzhou, Hangzhou (310009), China; 2. Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou (310014), China; 3. Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou (310006), China )
Objective: To investigate the effects of panaxadiol saponins component (PDS-C) isolated from total saponins of panax ginseng on proliferation, differentiation and corresponding gone expression profile of megakaryocytes. Methods: Bone marrow culture of colony forming assay of megakaryocytic progenitor cells (CFU-MK) was observed for the promoting proliferation mediated by PDS-C, and differentiation of megakaryocytic blasts caused by PDS-C was analyzed with flow cytometry in CHRF-288 and Meg-01 cells, as well as proliferation, differentiation-related genes expression profile and protein expression levels were detected by human gone expression microarray and western blot. Results: In response to PDS-C 10, 20 and 50 mg/L, CFU-MK from 10 human bone marrow samples was increased by 28.9± 2.7%, 41.0% ± 3.2% and 40.5% ± 2.6% over untreated control, respectively (P〈0.01, each). Flow cytometry analysis showed that PDS-C treated CHRF-288 cells and Meg-01 cells significantly increased in CD42b, CD41, TSP and CD36 positive ratio, respectively. PDS-C induced 29 genes up-regulated more than two-fold commonly in both cells detected by human expression microarray representing 4000 known genes. The protein expression levels of ZNF91, c-Fos, BTF3a, GATA-1, RGS2, NDRG2 and RUNX1 were increased with western blot in correspond to microarray results. Conclusion: PDS-C as an effective component for hematopoiesis, play the role to enhance proliferation and differentiation of megakaryocytes, also up-regulated expression of proliferation, differentiation-related genes and proteins in vitro. KEYWORDS panaxadiol saponins, megakaryocyte, gone expression profile, proliferation, differentiation
11-4928/R
panaxadiol saponins, megakaryocyte, gene expression profile, proliferation, differentiation
ISSN:1672-0415
1993-0402
DOI:10.1007/s11655-015-1970-3