Quantum measurement enables single biomarker sensitivity in flow cytometry
We present the first unambiguous experimental method enabling single-fluorophore sensitivity in a flow cytometer using quantum properties of single-photon emitters. We use a quantum measurement based on the second-order coherence function to prove that the optical signal is produced by individual bi...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 3891 - 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-49145-7 |
Cover
Summary: | We present the first unambiguous experimental method enabling single-fluorophore sensitivity in a flow cytometer using quantum properties of single-photon emitters. We use a quantum measurement based on the second-order coherence function to prove that the optical signal is produced by individual biomarkers traversing the interrogation volume of the flow cytometer from the first principles. This observation enables the use of the quantum toolbox for rapid detection, enumeration, and sorting of single fluorophores in large cell populations as well as a ‘photons-to-moles’ calibration of this measurement modality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-49145-7 |