Hybrid metaheuristic optimization for detecting and diagnosing noncommunicable diseases
In our data-driven world, the healthcare sector faces significant challenges in the early detection and management of Non-Communicable Diseases (NCDs). The COVID-19 pandemic has further emphasized the need for effective tools to predict and treat NCDs, especially in individuals at risk. This researc...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 7816 - 33 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
06.03.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-91136-3 |
Cover
| Summary: | In our data-driven world, the healthcare sector faces significant challenges in the early detection and management of Non-Communicable Diseases (NCDs). The COVID-19 pandemic has further emphasized the need for effective tools to predict and treat NCDs, especially in individuals at risk. This research addresses these pressing concerns by proposing a comprehensive framework that combines advanced data mining techniques, feature selection, and meta-heuristic optimization. The proposed framework introduces novel hybrid algorithms, including the Hierarchical Genetic Multiple Reduct Selection Algorithm (H-GMRA) and the Customized Function-based Particle Swarm Optimization with Rough Set Theory for NCD Feature Selection (CPSO-RST-NFS). These algorithms aim to address the challenges of feature selection, computational complexity, and disease classification accuracy. H-GMRA outperforms traditional methods by identifying minimal feature sets with high dependency ratios. CPSO-RST-NFS combines meta-heuristic optimization with feature selection, resulting in improved efficiency and accuracy. Through extensive experimentation on diverse NCD datasets, this research demonstrates the framework’s ability to select informative features, improve classification accuracy, and contribute to better patient outcomes. By bridging the gap between computational efficiency and disease classification accuracy, this work offers valuable insights for healthcare practitioners and data analysts, ultimately advancing the field of NCD research. The proposed framework presents a significant step towards enhancing the early detection and management of NCDs, offering hope for more precise clinical predictions and improved patient care. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-91136-3 |