New Clamp-PID Algorithm for Automated Glucose Clamps Improves Clamp Quality
Background: In automated glucose clamp experiments, blood glucose (BG) concentrations are kept close to a predefined target level using variable glucose infusion rates (GIRs) determined by implemented algorithms. Clamp quality (ie, the ability to keep BG close to target) highly depends on the qualit...
Saved in:
| Published in | Journal of diabetes science and technology Vol. 16; no. 2; pp. 408 - 414 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Los Angeles, CA
SAGE Publications
01.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-2968 1932-3107 1932-3107 |
| DOI | 10.1177/1932296821991514 |
Cover
| Summary: | Background:
In automated glucose clamp experiments, blood glucose (BG) concentrations are kept close to a predefined target level using variable glucose infusion rates (GIRs) determined by implemented algorithms. Clamp quality (ie, the ability to keep BG close to target) highly depends on the quality of these algorithms. We developed a new Clamp algorithm based on the proportional-integral-derivative (PID) approach and compared clamp quality between this and the established Biostator (BS) algorithm.
Methods:
In numerical simulations, the PID-based algorithm was optimized in silico. The optimized Clamp-PID algorithm was tested in in vitro experiments and finally validated in vivo in a small (n = 5) clinical study.
Results:
In silico, in vitro, and in vivo experiments showed better clamp quality for the new Clamp-PID algorithm compared with the BS algorithm: precision and absolute control deviation (ACD) decreased from 3.7% to 1.1% and from 2.9 mg/dL to 0.6 mg/dL, respectively, in the numerical simulation. The in vitro validation demonstrated reductions in precision (from 3.3% ± 0.1% (mean ± SD) to 1.4% ± 0.4%) and in ACD (from 2.3 mg/dL ± 0.4 mg/dL to 0.8 mg/dL ± 0.2 mg/dL), respectively. In the clinical study, precision and ACD improved from 6.5% ± 1.3% to 4.0% ± 1.1% and from 3.6 mg/dL ± 0.9 mg/dL to 2.2 mg/dl ± 0.6 mg/dl, respectively. The quality parameter utility did not change.
Conclusions:
The new Clamp-PID algorithm improves the clamp quality parameters precision and ACD versus the BS algorithm. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1932-2968 1932-3107 1932-3107 |
| DOI: | 10.1177/1932296821991514 |