A framework for determining MIMO process parameters by a neuro-DM&ACO approach

A framework combining artificial neural network (ANN) modelling technique, data mining and ant colony optimisation (ACO) algorithm is proposed for determining multiple-input multiple-output (MIMO) process parameters from the initial chemical-mechanical planarisation (CMP) processes used in semicondu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of production research Vol. 45; no. 15; pp. 3505 - 3520
Main Authors Wong, J.-T., Su, C.-T., Hsieh, H.-T.
Format Journal Article
LanguageEnglish
Published London Taylor & Francis Group 01.08.2007
Washington, DC Taylor & Francis
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0020-7543
1366-588X
DOI10.1080/00207540500471814

Cover

More Information
Summary:A framework combining artificial neural network (ANN) modelling technique, data mining and ant colony optimisation (ACO) algorithm is proposed for determining multiple-input multiple-output (MIMO) process parameters from the initial chemical-mechanical planarisation (CMP) processes used in semiconductor manufacturing. Owing to the invisibility of the ANN in the solution procedures, the decision tree approach of data mining is adopted to provide the necessary information for a real-valued ACO. The simulation result demonstrates that the proposed method can be an efficient tool for selecting properly defined parameter combination with the CMP process.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0020-7543
1366-588X
DOI:10.1080/00207540500471814