Hyperspectral Image Classification Using Weighted Joint Collaborative Representation

Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 12; no. 6; pp. 1209 - 1213
Main Authors Xiong, Mingming, Ran, Qiong, Li, Wei, Zou, Jinyi, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2015.2388703

Cover

Abstract Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit.
AbstractList Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) clas sification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit.
Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit.
Author Qiong Ran
Qian Du
Mingming Xiong
Jinyi Zou
Wei Li
Author_xml – sequence: 1
  givenname: Mingming
  surname: Xiong
  fullname: Xiong, Mingming
– sequence: 2
  givenname: Qiong
  surname: Ran
  fullname: Ran, Qiong
– sequence: 3
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 4
  givenname: Jinyi
  surname: Zou
  fullname: Zou, Jinyi
– sequence: 5
  givenname: Qian
  surname: Du
  fullname: Du, Qian
BookMark eNp9kE9LwzAYh4NMcJt-APFS8NyZN2na9ChDt8lAmBt6C137ZmZ0TU06Yd_e1ooHD57yQp7n_fMbkUFlKyTkGugEgKZ3y9nqZcIoiAnjUiaUn5EhCCFDKhIYdHUkQpHKtwsy8n5PKYtabEjW81ONzteYNy4rg8Uh22EwLTPvjTZ51hhbBRtvql3wimb33mARPFlTNcHUlmW2ta5FPjFYYe3QY9V8G5fkXGelx6ufd0w2jw_r6TxcPs8W0_tlmEecN6GOC8jjRKOMYCsYIJMMACXEKdNJrrc8FZSKgkteUMl1InmESQoUCpZSxviY3PZ9a2c_jugbtbdHV7UjFcQx5zRKYmippKdyZ713qFVu-j3bk02pgKouQtVFqLoI1U-ErQl_zNqZQ-ZO_zo3vWMQ8ZdvfyACzr8AGhZ-Ig
CODEN IGRSBY
CitedBy_id crossref_primary_10_1007_s11042_017_4403_9
crossref_primary_10_1109_LGRS_2016_2578038
crossref_primary_10_1109_TGRS_2019_2947200
crossref_primary_10_1109_TGRS_2017_2761893
crossref_primary_10_1109_TGRS_2017_2729882
crossref_primary_10_1109_LGRS_2015_2504449
crossref_primary_10_1080_2150704X_2016_1232868
crossref_primary_10_1049_iet_ipr_2016_0421
crossref_primary_10_1109_LGRS_2019_2906839
crossref_primary_10_1016_j_neucom_2018_06_089
crossref_primary_10_1109_LGRS_2017_2699667
crossref_primary_10_1007_s11760_022_02140_3
crossref_primary_10_1016_j_future_2019_05_004
crossref_primary_10_1007_s12145_019_00431_x
crossref_primary_10_1109_TGRS_2017_2781805
crossref_primary_10_1109_ACCESS_2017_2669149
crossref_primary_10_1109_TGRS_2020_3029578
crossref_primary_10_1016_j_inffus_2020_01_007
crossref_primary_10_1109_JSTARS_2017_2650939
crossref_primary_10_1109_LGRS_2017_2776113
crossref_primary_10_1109_TGRS_2017_2710355
crossref_primary_10_1109_ACCESS_2019_2892648
crossref_primary_10_1109_LGRS_2016_2645708
crossref_primary_10_1109_LGRS_2022_3159280
crossref_primary_10_3390_rs71114806
crossref_primary_10_1109_JSTARS_2016_2640449
crossref_primary_10_1007_s10916_019_1347_9
crossref_primary_10_1080_2150704X_2016_1196836
crossref_primary_10_1016_j_eswa_2017_04_001
crossref_primary_10_1109_TGRS_2019_2912330
crossref_primary_10_1080_01431161_2020_1799448
crossref_primary_10_1080_22797254_2018_1446727
crossref_primary_10_3390_electronics12183777
crossref_primary_10_1109_LGRS_2020_2998605
crossref_primary_10_1080_01431161_2017_1343513
crossref_primary_10_1109_JSTARS_2024_3373600
crossref_primary_10_1007_s11227_020_03474_w
crossref_primary_10_3390_rs9070662
crossref_primary_10_1007_s13042_022_01767_5
crossref_primary_10_1109_TGRS_2018_2866190
crossref_primary_10_1109_TIP_2024_3357250
crossref_primary_10_21307_ijssis_2017_224
crossref_primary_10_3390_photonics10101104
crossref_primary_10_1080_01431161_2020_1823516
crossref_primary_10_1080_22797254_2018_1529543
Cites_doi 10.1109/LGRS.2005.857031
10.1109/LGRS.2007.905116
10.1109/LGRS.2014.2343956
10.1109/LGRS.2011.2145353
10.1109/JSTARS.2013.2257696
10.1109/JSTARS.2012.2185822
10.1109/JSTARS.2014.2306956
10.1109/IGARSS.2011.6049401
10.1109/TGRS.2013.2241773
10.1109/LGRS.2009.2020924
10.1109/TGRS.2011.2129595
10.1109/TSP.2011.2179539
10.1109/TGRS.2013.2272760
10.1109/LGRS.2013.2242042
10.1109/JSTARS.2013.2295313
10.1109/JSTARS.2013.2265697
10.1109/LGRS.2011.2128854
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2015.2388703
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1213
ExternalDocumentID 3623503011
10_1109_LGRS_2015_2388703
7031413
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: NSFC-61302164
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: YS1404
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c433t-f6d1c67fe841b521e28211e81692f7cfb395005d383d083f7834e79101d290223
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:25:50 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
Wed Oct 01 04:25:29 EDT 2025
Tue Aug 26 16:41:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords spectral–spatial information
Collaborative representation based classifier
nearest regularized subspace (NRS) classifier
sparse representation based classifier
hyperspectral image (HSI) classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c433t-f6d1c67fe841b521e28211e81692f7cfb395005d383d083f7834e79101d290223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1663304761
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_7031413
crossref_citationtrail_10_1109_LGRS_2015_2388703
crossref_primary_10_1109_LGRS_2015_2388703
proquest_journals_1663304761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1109/LGRS.2005.857031
– ident: ref7
  doi: 10.1109/LGRS.2007.905116
– ident: ref3
  doi: 10.1109/LGRS.2014.2343956
– ident: ref5
  doi: 10.1109/LGRS.2011.2145353
– ident: ref13
  doi: 10.1109/JSTARS.2013.2257696
– ident: ref1
  doi: 10.1109/JSTARS.2012.2185822
– ident: ref14
  doi: 10.1109/JSTARS.2014.2306956
– ident: ref15
  doi: 10.1109/IGARSS.2011.6049401
– ident: ref10
  doi: 10.1109/TGRS.2013.2241773
– ident: ref6
  doi: 10.1109/LGRS.2009.2020924
– ident: ref9
  doi: 10.1109/TGRS.2011.2129595
– ident: ref16
  doi: 10.1109/TSP.2011.2179539
– ident: ref17
  doi: 10.1109/TGRS.2013.2272760
– ident: ref2
  doi: 10.1109/LGRS.2013.2242042
– ident: ref12
  doi: 10.1109/JSTARS.2013.2295313
– ident: ref4
  doi: 10.1109/JSTARS.2013.2265697
– ident: ref11
  doi: 10.1109/LGRS.2011.2128854
SSID ssj0024887
Score 2.3576906
Snippet Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously...
Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) clas sification. In this letter, based on our...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1209
SubjectTerms Accuracy
Collaborative representation based classifier
Educational institutions
hyperspectral image (HSI) classification
Hyperspectral imaging
nearest regularized subspace (NRS) classifier
sparse representation based classifier
spectral-spatial information
Support vector machines
Training
Title Hyperspectral Image Classification Using Weighted Joint Collaborative Representation
URI https://ieeexplore.ieee.org/document/7031413
https://www.proquest.com/docview/1663304761
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGEoILjwFiMFAPnBAdTR9pc0QTY0zAYQyxW0UTVyCgQ6NDgl-Pk2ZDPIS49ZBEaezEnxPbH8A-Ieow40q56HvSDcMgdrNcxS5PIiFUEGLOdaLwxSXvXoe9YTSsweEsFwYRTfAZtvSnectXIznRV2VHpta6pqidixNe5Wp91tVLDBmeRgRuJJKhfcFknjg6P-1f6SCuqEX2ifQz-GKDDKnKj5PYmJfOClxMJ1ZFlTy0JmXWku_fajb-d-arsGxxpnNcKcYa1LCow6KlPL97q8PCqeH0fVuHQZd80Srlckxdzp7oiHEMWaYOIzKSc0xkgXNj7lFROb3RfVE67U8dekWnb2JqbSpTsQHXnZNBu-tasgVXhkFQujlXTPI4xyRkGdl0JF-MMUwYF34eyzwLREQ7VpFHqwi25ZqgA2MCG0z5goBAsAnzxajALXAYxhzxFoXn3dJPy0SyTGeiBJlPWz7hDfCmy59KW4lcE2I8psYj8USqJZZqiaVWYg04mHV5rspw_NV4XUtg1tAufgOaUxmndqO-pIwQl3555Gz79147sKTHrqLDmjBfjie4SzikzPaMAn4AfIDXoA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCMGFN2IwoAdOiI5mTdPmiCZgwMYBhtitookrENAh6JDg1-Ok2RAPIW49JEoaO_HnxPYHsEOImmdCax-bgfI5D2M_y3XsiySSUoccc2EShbvnon3FT_tRfwL2xrkwiGiDz7BhPu1bvh6oobkq27e11g1F7VTEOY-qbK3PynqJpcMzmMCPZNJ3b5gskPud44tLE8YVNchCkYaGX6yQpVX5cRZbA3M0D93R1Kq4kvvGsMwa6v1b1cb_zn0B5hzS9A4q1ViECSyWYMaRnt--LcH0sWX1fVuGXpu80Srp8pm6nDzSIeNZukwTSGRl59nYAu_a3qSi9k4Hd0XptT616BW9CxtV65KZihW4Ojrstdq-o1vwFQ_D0s-FZkrEOSacZWTVkbwxxjBhQjbzWOVZKCPas5p8Wk3ALTcUHRgT3GC6KQkKhKswWQwKXAOPYSwQb1AGwQ39tEoUy0wuSpg1adMnogbBaPlT5WqRG0qMh9T6JIFMjcRSI7HUSawGu-MuT1Uhjr8aLxsJjBu6xa9BfSTj1G3Vl5QR5jJvj4Kt_95rG2bavW4n7Zycn23ArBmnihWrw2T5PMRNQiVltmWV8QPyNdrt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+Using+Weighted+Joint+Collaborative+Representation&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Mingming+Xiong&rft.au=Qiong+Ran&rft.au=Wei+Li&rft.au=Jinyi+Zou&rft.date=2015-06-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=12&rft.issue=6&rft.spage=1209&rft.epage=1213&rft_id=info:doi/10.1109%2FLGRS.2015.2388703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2015_2388703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon