Hyperspectral Image Classification Using Weighted Joint Collaborative Representation
Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is propo...
        Saved in:
      
    
          | Published in | IEEE geoscience and remote sensing letters Vol. 12; no. 6; pp. 1209 - 1213 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.06.2015
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1545-598X 1558-0571  | 
| DOI | 10.1109/LGRS.2015.2388703 | 
Cover
| Abstract | Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit. | 
    
|---|---|
| AbstractList | Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) clas sification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit. Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit.  | 
    
| Author | Qiong Ran Qian Du Mingming Xiong Jinyi Zou Wei Li  | 
    
| Author_xml | – sequence: 1 givenname: Mingming surname: Xiong fullname: Xiong, Mingming – sequence: 2 givenname: Qiong surname: Ran fullname: Ran, Qiong – sequence: 3 givenname: Wei surname: Li fullname: Li, Wei – sequence: 4 givenname: Jinyi surname: Zou fullname: Zou, Jinyi – sequence: 5 givenname: Qian surname: Du fullname: Du, Qian  | 
    
| BookMark | eNp9kE9LwzAYh4NMcJt-APFS8NyZN2na9ChDt8lAmBt6C137ZmZ0TU06Yd_e1ooHD57yQp7n_fMbkUFlKyTkGugEgKZ3y9nqZcIoiAnjUiaUn5EhCCFDKhIYdHUkQpHKtwsy8n5PKYtabEjW81ONzteYNy4rg8Uh22EwLTPvjTZ51hhbBRtvql3wimb33mARPFlTNcHUlmW2ta5FPjFYYe3QY9V8G5fkXGelx6ufd0w2jw_r6TxcPs8W0_tlmEecN6GOC8jjRKOMYCsYIJMMACXEKdNJrrc8FZSKgkteUMl1InmESQoUCpZSxviY3PZ9a2c_jugbtbdHV7UjFcQx5zRKYmippKdyZ713qFVu-j3bk02pgKouQtVFqLoI1U-ErQl_zNqZQ-ZO_zo3vWMQ8ZdvfyACzr8AGhZ-Ig | 
    
| CODEN | IGRSBY | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_017_4403_9 crossref_primary_10_1109_LGRS_2016_2578038 crossref_primary_10_1109_TGRS_2019_2947200 crossref_primary_10_1109_TGRS_2017_2761893 crossref_primary_10_1109_TGRS_2017_2729882 crossref_primary_10_1109_LGRS_2015_2504449 crossref_primary_10_1080_2150704X_2016_1232868 crossref_primary_10_1049_iet_ipr_2016_0421 crossref_primary_10_1109_LGRS_2019_2906839 crossref_primary_10_1016_j_neucom_2018_06_089 crossref_primary_10_1109_LGRS_2017_2699667 crossref_primary_10_1007_s11760_022_02140_3 crossref_primary_10_1016_j_future_2019_05_004 crossref_primary_10_1007_s12145_019_00431_x crossref_primary_10_1109_TGRS_2017_2781805 crossref_primary_10_1109_ACCESS_2017_2669149 crossref_primary_10_1109_TGRS_2020_3029578 crossref_primary_10_1016_j_inffus_2020_01_007 crossref_primary_10_1109_JSTARS_2017_2650939 crossref_primary_10_1109_LGRS_2017_2776113 crossref_primary_10_1109_TGRS_2017_2710355 crossref_primary_10_1109_ACCESS_2019_2892648 crossref_primary_10_1109_LGRS_2016_2645708 crossref_primary_10_1109_LGRS_2022_3159280 crossref_primary_10_3390_rs71114806 crossref_primary_10_1109_JSTARS_2016_2640449 crossref_primary_10_1007_s10916_019_1347_9 crossref_primary_10_1080_2150704X_2016_1196836 crossref_primary_10_1016_j_eswa_2017_04_001 crossref_primary_10_1109_TGRS_2019_2912330 crossref_primary_10_1080_01431161_2020_1799448 crossref_primary_10_1080_22797254_2018_1446727 crossref_primary_10_3390_electronics12183777 crossref_primary_10_1109_LGRS_2020_2998605 crossref_primary_10_1080_01431161_2017_1343513 crossref_primary_10_1109_JSTARS_2024_3373600 crossref_primary_10_1007_s11227_020_03474_w crossref_primary_10_3390_rs9070662 crossref_primary_10_1007_s13042_022_01767_5 crossref_primary_10_1109_TGRS_2018_2866190 crossref_primary_10_1109_TIP_2024_3357250 crossref_primary_10_21307_ijssis_2017_224 crossref_primary_10_3390_photonics10101104 crossref_primary_10_1080_01431161_2020_1823516 crossref_primary_10_1080_22797254_2018_1529543  | 
    
| Cites_doi | 10.1109/LGRS.2005.857031 10.1109/LGRS.2007.905116 10.1109/LGRS.2014.2343956 10.1109/LGRS.2011.2145353 10.1109/JSTARS.2013.2257696 10.1109/JSTARS.2012.2185822 10.1109/JSTARS.2014.2306956 10.1109/IGARSS.2011.6049401 10.1109/TGRS.2013.2241773 10.1109/LGRS.2009.2020924 10.1109/TGRS.2011.2129595 10.1109/TSP.2011.2179539 10.1109/TGRS.2013.2272760 10.1109/LGRS.2013.2242042 10.1109/JSTARS.2013.2295313 10.1109/JSTARS.2013.2265697 10.1109/LGRS.2011.2128854  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D  | 
    
| DOI | 10.1109/LGRS.2015.2388703 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1558-0571 | 
    
| EndPage | 1213 | 
    
| ExternalDocumentID | 3623503011 10_1109_LGRS_2015_2388703 7031413  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: NSFC-61302164 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: YS1404  | 
    
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D RIG  | 
    
| ID | FETCH-LOGICAL-c433t-f6d1c67fe841b521e28211e81692f7cfb395005d383d083f7834e79101d290223 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1545-598X | 
    
| IngestDate | Mon Jun 30 08:25:50 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Wed Oct 01 04:25:29 EDT 2025 Tue Aug 26 16:41:40 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | spectral–spatial information Collaborative representation based classifier nearest regularized subspace (NRS) classifier sparse representation based classifier hyperspectral image (HSI) classification  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c433t-f6d1c67fe841b521e28211e81692f7cfb395005d383d083f7834e79101d290223 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1663304761 | 
    
| PQPubID | 75725 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | ieee_primary_7031413 crossref_citationtrail_10_1109_LGRS_2015_2388703 crossref_primary_10_1109_LGRS_2015_2388703 proquest_journals_1663304761  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-06-01 | 
    
| PublicationDateYYYYMMDD | 2015-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE geoscience and remote sensing letters | 
    
| PublicationTitleAbbrev | LGRS | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref8 doi: 10.1109/LGRS.2005.857031 – ident: ref7 doi: 10.1109/LGRS.2007.905116 – ident: ref3 doi: 10.1109/LGRS.2014.2343956 – ident: ref5 doi: 10.1109/LGRS.2011.2145353 – ident: ref13 doi: 10.1109/JSTARS.2013.2257696 – ident: ref1 doi: 10.1109/JSTARS.2012.2185822 – ident: ref14 doi: 10.1109/JSTARS.2014.2306956 – ident: ref15 doi: 10.1109/IGARSS.2011.6049401 – ident: ref10 doi: 10.1109/TGRS.2013.2241773 – ident: ref6 doi: 10.1109/LGRS.2009.2020924 – ident: ref9 doi: 10.1109/TGRS.2011.2129595 – ident: ref16 doi: 10.1109/TSP.2011.2179539 – ident: ref17 doi: 10.1109/TGRS.2013.2272760 – ident: ref2 doi: 10.1109/LGRS.2013.2242042 – ident: ref12 doi: 10.1109/JSTARS.2013.2295313 – ident: ref4 doi: 10.1109/JSTARS.2013.2265697 – ident: ref11 doi: 10.1109/LGRS.2011.2128854  | 
    
| SSID | ssj0024887 | 
    
| Score | 2.3576906 | 
    
| Snippet | Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously... Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) clas sification. In this letter, based on our...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1209 | 
    
| SubjectTerms | Accuracy Collaborative representation based classifier Educational institutions hyperspectral image (HSI) classification Hyperspectral imaging nearest regularized subspace (NRS) classifier sparse representation based classifier spectral-spatial information Support vector machines Training  | 
    
| Title | Hyperspectral Image Classification Using Weighted Joint Collaborative Representation | 
    
| URI | https://ieeexplore.ieee.org/document/7031413 https://www.proquest.com/docview/1663304761  | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGEoILjwFiMFAPnBAdTR9pc0QTY0zAYQyxW0UTVyCgQ6NDgl-Pk2ZDPIS49ZBEaezEnxPbH8A-Ieow40q56HvSDcMgdrNcxS5PIiFUEGLOdaLwxSXvXoe9YTSsweEsFwYRTfAZtvSnectXIznRV2VHpta6pqidixNe5Wp91tVLDBmeRgRuJJKhfcFknjg6P-1f6SCuqEX2ifQz-GKDDKnKj5PYmJfOClxMJ1ZFlTy0JmXWku_fajb-d-arsGxxpnNcKcYa1LCow6KlPL97q8PCqeH0fVuHQZd80Srlckxdzp7oiHEMWaYOIzKSc0xkgXNj7lFROb3RfVE67U8dekWnb2JqbSpTsQHXnZNBu-tasgVXhkFQujlXTPI4xyRkGdl0JF-MMUwYF34eyzwLREQ7VpFHqwi25ZqgA2MCG0z5goBAsAnzxajALXAYxhzxFoXn3dJPy0SyTGeiBJlPWz7hDfCmy59KW4lcE2I8psYj8USqJZZqiaVWYg04mHV5rspw_NV4XUtg1tAufgOaUxmndqO-pIwQl3555Gz79147sKTHrqLDmjBfjie4SzikzPaMAn4AfIDXoA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQCMGFN2IwoAdOiI5mTdPmiCZgwMYBhtitookrENAh6JDg1-Ok2RAPIW49JEoaO_HnxPYHsEOImmdCax-bgfI5D2M_y3XsiySSUoccc2EShbvnon3FT_tRfwL2xrkwiGiDz7BhPu1bvh6oobkq27e11g1F7VTEOY-qbK3PynqJpcMzmMCPZNJ3b5gskPud44tLE8YVNchCkYaGX6yQpVX5cRZbA3M0D93R1Kq4kvvGsMwa6v1b1cb_zn0B5hzS9A4q1ViECSyWYMaRnt--LcH0sWX1fVuGXpu80Srp8pm6nDzSIeNZukwTSGRl59nYAu_a3qSi9k4Hd0XptT616BW9CxtV65KZihW4Ojrstdq-o1vwFQ_D0s-FZkrEOSacZWTVkbwxxjBhQjbzWOVZKCPas5p8Wk3ALTcUHRgT3GC6KQkKhKswWQwKXAOPYSwQb1AGwQ39tEoUy0wuSpg1adMnogbBaPlT5WqRG0qMh9T6JIFMjcRSI7HUSawGu-MuT1Uhjr8aLxsJjBu6xa9BfSTj1G3Vl5QR5jJvj4Kt_95rG2bavW4n7Zycn23ArBmnihWrw2T5PMRNQiVltmWV8QPyNdrt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+Using+Weighted+Joint+Collaborative+Representation&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Mingming+Xiong&rft.au=Qiong+Ran&rft.au=Wei+Li&rft.au=Jinyi+Zou&rft.date=2015-06-01&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=12&rft.issue=6&rft.spage=1209&rft.epage=1213&rft_id=info:doi/10.1109%2FLGRS.2015.2388703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2015_2388703 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |