Hyperspectral Image Classification Using Weighted Joint Collaborative Representation

Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is propo...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 12; no. 6; pp. 1209 - 1213
Main Authors Xiong, Mingming, Ran, Qiong, Li, Wei, Zou, Jinyi, Du, Qian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2015.2388703

Cover

More Information
Summary:Recently, representation-based classifiers have gained increasing interest in hyperspectral image (HSI) classification. In this letter, based on our previously developed joint collaborative representation (JCR) classifier, an improved version, which is called weighted JCR (WJCR) classifier, is proposed. JCR adopts the same weights when extracting spatial and spectral features from surrounding pixels. Differing from JCR, WJCR attempts to utilize more appropriate weights by considering the similarity between the center pixel and its surroundings. Experimental results using two real HSIs demon strate that the proposed WJCR outperforms the original JCR and some other traditional classifiers, such as the support vector machine (SVM), the SVM with a composite kernel, and simultaneous orthogonal matching pursuit.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2015.2388703