Extraction of periodic multivariate signals: mapping of voltage-dependent dye fluorescence in the mouse heart

In many experimental circumstances, heart dynamics are, to a good approximation, periodic. For this reason, it makes sense to use high-resolution methods in the frequency domain to visualize the spectrum of imaging data of the heart and to estimate the deterministic signal content and extract the pe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 22; no. 12; pp. 1537 - 1549
Main Authors Sornborger, A., Sirovich, L., Morley, G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/TMI.2003.818163

Cover

More Information
Summary:In many experimental circumstances, heart dynamics are, to a good approximation, periodic. For this reason, it makes sense to use high-resolution methods in the frequency domain to visualize the spectrum of imaging data of the heart and to estimate the deterministic signal content and extract the periodic signal from background noise in experimental data. In this paper, we describe the first application of a new method that we call cardiac rhythm analysis which uses a combination of principal component analysis and multitaper harmonic analysis to extract periodic, deterministic signals from high-resolution imaging data of cardiac electrical activity. We show that this method significantly increases the signal-to-noise ratio of our recordings, allowing for better visualization of signal dynamics and more accurate quantification of the properties of electrical conduction. We visualize the spectra of three cardiac data sets of mouse hearts exhibiting sinus rhythm, paced rhythm and monomorphic tachycardia. Then, for pedagogical purposes, we investigate the tachycardia more closely, demonstrating the presence of two distinct periodicities in the re-entrant tachycardia. Analysis of the tachycardia shows that cardiac rhythm analysis not only allows for better visualization of electrical activity, but also provides new opportunities to study multiple periodicities in signal dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2003.818163