Adaptive EWMA procedures for monitoring processes subject to linear drifts
The conventional Statistical Process Control (SPC) techniques have been focused mostly on the detection of step changes in process means. However, there are often settings for monitoring linear drifts in process means, e.g., the gradual change due to tool wear or similar causes. The adaptive exponen...
Saved in:
Published in | Computational statistics & data analysis Vol. 55; no. 10; pp. 2819 - 2829 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.10.2011
Elsevier |
Series | Computational Statistics & Data Analysis |
Subjects | |
Online Access | Get full text |
ISSN | 0167-9473 1872-7352 |
DOI | 10.1016/j.csda.2011.04.008 |
Cover
Summary: | The conventional Statistical Process Control (SPC) techniques have been focused mostly on the detection of step changes in process means. However, there are often settings for monitoring linear drifts in process means, e.g., the gradual change due to tool wear or similar causes. The adaptive exponentially weighted moving average (AEWMA) procedures proposed by
Yashchin (1995) have received a great deal of attention mainly for estimating and monitoring step mean shifts. This paper analyzes the performance of AEWMA schemes in signaling linear drifts. A numerical procedure based on the integral equation approach is presented for computing the average run length (ARL) of AEWMA charts under linear drifts in the mean. The comparison results favor the AEWMA chart under linear drifts. Some guidelines for designing AEWMA charts for detecting linear drifts are presented. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2011.04.008 |