Adaptive EWMA procedures for monitoring processes subject to linear drifts

The conventional Statistical Process Control (SPC) techniques have been focused mostly on the detection of step changes in process means. However, there are often settings for monitoring linear drifts in process means, e.g., the gradual change due to tool wear or similar causes. The adaptive exponen...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 55; no. 10; pp. 2819 - 2829
Main Authors Su, Yan, Shu, Lianjie, Tsui, Kwok-Leung
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.10.2011
Elsevier
SeriesComputational Statistics & Data Analysis
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2011.04.008

Cover

More Information
Summary:The conventional Statistical Process Control (SPC) techniques have been focused mostly on the detection of step changes in process means. However, there are often settings for monitoring linear drifts in process means, e.g., the gradual change due to tool wear or similar causes. The adaptive exponentially weighted moving average (AEWMA) procedures proposed by  Yashchin (1995) have received a great deal of attention mainly for estimating and monitoring step mean shifts. This paper analyzes the performance of AEWMA schemes in signaling linear drifts. A numerical procedure based on the integral equation approach is presented for computing the average run length (ARL) of AEWMA charts under linear drifts in the mean. The comparison results favor the AEWMA chart under linear drifts. Some guidelines for designing AEWMA charts for detecting linear drifts are presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2011.04.008