Evidence That Mutations in the X-linked DDP Gene Cause Incompletely Penetrant and Variable Skewed X Inactivation

X chromosome inactivation results in the random transcriptional silencing of one of the two X chromosomes early in female development. After random inactivation, certain deleterious X-linked mutations can create a selective disadvantage for cells in which the mutation is on the active X chromosome,...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of human genetics Vol. 64; no. 3; pp. 759 - 767
Main Authors Plenge, Robert M., Tranebjaerg, Lisbeth, Jensen, Peter K.A., Schwartz, Charles, Willard, Huntington F.
Format Journal Article
LanguageEnglish
Published Chicago, IL Elsevier Inc 01.03.1999
University of Chicago Press
Subjects
Online AccessGet full text
ISSN0002-9297
1537-6605
DOI10.1086/302286

Cover

More Information
Summary:X chromosome inactivation results in the random transcriptional silencing of one of the two X chromosomes early in female development. After random inactivation, certain deleterious X-linked mutations can create a selective disadvantage for cells in which the mutation is on the active X chromosome, leading to X inactivation patterns with the mutation on the inactive X chromosome in nearly 100% of the individual's cells. In contrast to the homogeneous patterns of complete skewed inactivation noted for many X-linked disorders, here we describe a family segregating a mutation in the dystonia-deafness peptide ( DDP) gene, in which female carriers show incompletely penetrant and variable X inactivation patterns in peripheral blood leukocytes, ranging between 50:50 and >95:5. To address the genetic basis for the unusual pattern of skewing in this family, we first mapped the locus responsible for the variable skewing to the proximal long arm (Xq12-q22) of the X chromosome ( Z=5.7, P=.002, LOD score 3.57), a region that includes both the DDP and the XIST genes. Examination of multiple cell types from women carrying a DDP mutation and of peripheral blood leukocytes from women from two unrelated families who carry different mutations in the DDP gene suggests that the skewed X inactivation is the result of selection against cells containing the mutant DDP gene on the active X chromosome, although skewing is apparently not as severe as that seen for many other deleterious X-linked mutations. Thus, DDP is an example of an X-linked gene for which mutations cause partial cell selection and thus incompletely skewed X inactivation in peripheral blood leukocytes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9297
1537-6605
DOI:10.1086/302286