Development of Growth Hormone Secretagogues

The GH secretagogues (GHS) were developed by reverse pharmacology. The objective was to develop small molecules with pharmacokinetics suitable for once-daily oral administration that would rejuvenate the GH/IGF-I axis. Neither the receptor nor the ligand that controlled pulse amplitude of hormone re...

Full description

Saved in:
Bibliographic Details
Published inEndocrine reviews Vol. 26; no. 3; pp. 346 - 360
Main Author Smith, Roy G.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.05.2005
Copyright by The Endocrine Society
Subjects
Online AccessGet full text
ISSN0163-769X
1945-7189
DOI10.1210/er.2004-0019

Cover

More Information
Summary:The GH secretagogues (GHS) were developed by reverse pharmacology. The objective was to develop small molecules with pharmacokinetics suitable for once-daily oral administration that would rejuvenate the GH/IGF-I axis. Neither the receptor nor the ligand that controlled pulse amplitude of hormone release was known; therefore, identification of lead structures was based on function. I reasoned that GH pulse amplitude could be increased by four possible mechanisms: 1) increasing GHRH release; 2) amplifying GHRH signaling in somatotrophs of the anterior pituitary gland; 3) reducing somatostatin release; and 4) antagonizing somatostatin receptor signaling. Remarkably, the GHS act through all four mechanisms to reproduce a young adult physiological GH profile in elderly subjects that was accompanied by increased bone mineral density and lean mass, modest improvements in strength, and improved recovery from hip fracture. Furthermore, restoration of thymic function was induced in old mice. The GHS receptor (GHS-R) was subsequently identified by expression cloning and found to be a previously unknown G protein-coupled receptor expressed predominantly in brain, pituitary gland, and pancreas. Reverse pharmacology was completed when the cloned GHS-R was exploited to identify an endogenous agonist (ghrelin) and a partial agonist (adenosine); ghsr-knockout mice studies confirmed that GHS are ghrelin mimetics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0163-769X
1945-7189
DOI:10.1210/er.2004-0019