Comparative Evaluation of State-of-the-Art Semantic Segmentation Networks for Long-Term Landslide Map Production

The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (D...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 22; p. 9041
Main Authors Hu, Zekun, Yi, Bangjin, Li, Hui, Zhong, Cheng, Gao, Peng, Chen, Jiaoqi, Yao, Qianxiang, Guo, Haojia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23229041

Cover

More Information
Summary:The production of long-term landslide maps (LAM) holds crucial importance in estimating landslide activity, vegetation disturbance, and regional stability. However, the availability of LAMs remains limited in many regions, despite the application of various machine-learning methods, deep-learning (DL) models, and ensemble strategies in landslide detection. While transfer learning is considered an effective approach to tackle this challenge, there has been limited exploration and comparison of the temporal transferability of state-of-the-art deep-learning models in the context of LAM production, leaving a significant gap in the research. In this study, an extensive series of tests was conducted to evaluate the temporal transferability of typical semantic segmentation models, specifically U-Net, U-Net 3+, and TransU-Net, using a 10-year landslide-inventory dataset located near the epicenter of the Wenchuan earthquake. The experiment results disclose the feasibility and limitations of implementing transfer-learning methods for LAM production, particularly when leveraging the power of U-Net 3+. Furthermore, following an assessment of the effects of varying data volumes, patch sizes, and time intervals, this study recommends appropriate settings for LAM production, emphasizing the balance between efficiency and production performance. The findings from this study can serve as a valuable reference for devising an efficient and reliable strategy for large-scale LAM production in landslide-prone regions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23229041