Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data
An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the...
        Saved in:
      
    
          | Published in | Magnetic resonance in medicine Vol. 64; no. 1; pp. 203 - 210 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken
          Wiley Subscription Services, Inc., A Wiley Company
    
        01.07.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0740-3194 1522-2594 1522-2594  | 
| DOI | 10.1002/mrm.22398 | 
Cover
| Abstract | An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real‐time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. | 
    
|---|---|
| AbstractList | An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. [copy 2010 Wiley-Liss, Inc. An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time.An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real‐time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  | 
    
| Author | Clare, Stuart Xie, Jingyi Jezzard, Peter Gallichan, Daniel Gunn, Roger N.  | 
    
| Author_xml | – sequence: 1 givenname: Jingyi surname: Xie fullname: Xie, Jingyi email: jxie@fmrib.ox.ac.uk organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK – sequence: 2 givenname: Stuart surname: Clare fullname: Clare, Stuart organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK – sequence: 3 givenname: Daniel surname: Gallichan fullname: Gallichan, Daniel organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK – sequence: 4 givenname: Roger N. surname: Gunn fullname: Gunn, Roger N. organization: Department of Engineering Science, University of Oxford, Oxford, UK – sequence: 5 givenname: Peter surname: Jezzard fullname: Jezzard, Peter organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20572144$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkEtv1DAURi1URKeFBX8AeYeolNbPOFmiqpRKMyAFEEvrJrmpDM6jtkOZf98M03aBRFlZuj7ffZwjcjCMAxLymrNTzpg460N_KoQsi2dkxbUQmdClOiArZhTLJC_VITmK8QdjrCyNekEOBdNGcKVWxFYIPkuuRwotTMn9QhrxZsYhOfC0xeiuB9qNgY7LZ7-UoLmZXXTJjQMdOwohYdihcXID9VCjd8M13VRXtIUEL8nzDnzEV_fvMfn24eLr-cds_fny6vz9OmuUKIusa5hGFEZypusGas67vFS6hla3yhSgWt0J0WghWyF1kRtgeZ43qHAhGRTymJzs-87DBNtb8N5OYdk3bC1ndmfJLpbsH0sL_HYPT2FcTo3J9i426D0MOM7RFoVkohA8_y9ppFQmL4VcyDf35Fz32D5Of1C9AO_2QBPGGAN2Ty549hfbuAQ75SmA808lbp3H7b9b2021eUhk-4SLCX8_JiD8tLmRRtvvny6tMLqqKra2X-QdTzW8Dw | 
    
| CitedBy_id | crossref_primary_10_1371_journal_pcbi_1002280 crossref_primary_10_1002_mrm_25333 crossref_primary_10_1109_TBME_2011_2164916 crossref_primary_10_1016_j_neuroimage_2020_117246 crossref_primary_10_1002_mrm_22922 crossref_primary_10_1002_nbm_1693 crossref_primary_10_1016_j_neuroimage_2011_01_045 crossref_primary_10_1027_2151_2604_a000145 crossref_primary_10_1016_j_zemedi_2014_07_003 crossref_primary_10_1038_jcbfm_2014_163 crossref_primary_10_1093_gji_ggv329 crossref_primary_10_1002_mrm_30091  | 
    
| Cites_doi | 10.1080/01621459.1993.10476305 10.1161/STROKEAHA.107.512319 10.1002/mrm.10559 10.1161/01.STR.31.3.680 10.1002/mrm.21549 10.1017/S0962492900002841 10.1002/mrm.1910390506 10.1259/0007-1285-67-804-1258 10.1002/mrm.1910390602 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R 10.1080/00401706.1989.10488475 10.1002/mrm.20580  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2010 Wiley‐Liss, Inc. (c) 2010 Wiley-Liss, Inc.  | 
    
| Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: (c) 2010 Wiley-Liss, Inc.  | 
    
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 ADTOC UNPAY  | 
    
| DOI | 10.1002/mrm.22398 | 
    
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| EISSN | 1522-2594 | 
    
| EndPage | 210 | 
    
| ExternalDocumentID | 10.1002/mrm.22398 20572144 10_1002_mrm_22398 MRM22398 ark_67375_WNG_275RRR0L_S  | 
    
| Genre | article Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Medical Research Council for additional research – fundername: Medical Research Council grantid: G0802179 – fundername: Medical Research Council grantid: G0700399  | 
    
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4298-fc05ee273105bcab11f6945bad5d478a4d5f22c523d235867a0666ce4e11f0a83 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0740-3194 1522-2594  | 
    
| IngestDate | Tue Aug 19 17:45:51 EDT 2025 Mon Oct 06 18:08:39 EDT 2025 Thu Sep 04 20:05:14 EDT 2025 Mon Jul 21 05:15:21 EDT 2025 Wed Oct 01 02:05:00 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Wed Jan 22 16:57:11 EST 2025 Sun Sep 21 06:14:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | (c) 2010 Wiley-Liss, Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4298-fc05ee273105bcab11f6945bad5d478a4d5f22c523d235867a0666ce4e11f0a83 | 
    
| Notes | Medical Research Council for additional research ArticleID:MRM22398 M: male. F: female. yr: year. istex:96BF3784FE7A7608DAAA477AA902B937B7B5BC70 ark:/67375/WNG-275RRR0L-S Dr. Xie and Dr. Clare share joint first authorship for this paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22398 | 
    
| PMID | 20572144 | 
    
| PQID | 733476923 | 
    
| PQPubID | 23479 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mrm_22398 proquest_miscellaneous_883028216 proquest_miscellaneous_733476923 pubmed_primary_20572144 crossref_primary_10_1002_mrm_22398 crossref_citationtrail_10_1002_mrm_22398 wiley_primary_10_1002_mrm_22398_MRM22398 istex_primary_ark_67375_WNG_275RRR0L_S  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2010 | 
    
| PublicationDateYYYYMMDD | 2010-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2010 text: July 2010  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken | 
    
| PublicationPlace_xml | – name: Hoboken – name: United States  | 
    
| PublicationTitle | Magnetic resonance in medicine | 
    
| PublicationTitleAlternate | Magn. Reson. Med | 
    
| PublicationYear | 2010 | 
    
| Publisher | Wiley Subscription Services, Inc., A Wiley Company | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company | 
    
| References | Powell MJD. Direct search algorithms for optimization calculations. Acta Numerica 1998; 7: 287-336. Distefano J. Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals. J Cybern Inf Sci 1979; 2: 6-20. Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599-607. Chaudhuri P, Mykland PA. On efficient designing of nonlinear experiments. Stat Sin 1995; 5: 421-440. Distefano J. Optimized blood sampling protocols and sequential design of kinetic experiments. Am J Physiol 1981; 240: R259-R265. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680-687. Xie J, Gallichan D, Gunn RN, Jezzard P. Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med 2008; 59: 826-834. Ford I, Titterington D, Kitsos C. Recent advances in nonlinear experimental design. Technometrics 1989; 31: 49-60. Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998; 39: 855-864. Redpath TW, Smith FW. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 1994; 67: 1258-1263. Chaudhuri P, Mykland PA. Nonlinear experiments: optimal design and inference based on likelihood. J Am Stat Assoc 1993; 88: 538-546. Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491-498. Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee TY, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. Stroke 2008; 39: 1621-1628. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708. 1998; 39 1989; 31 1993; 88 1981; 240 2000; 44 2000; 31 2008; 39 1994; 67 2008; 59 2005; 54 1979; 2 1998; 7 2003; 50 1995; 5 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 Distefano J (e_1_2_7_4_2) 1979; 2 Chaudhuri P (e_1_2_7_5_2) 1995; 5 Distefano J (e_1_2_7_6_2) 1981; 240  | 
    
| References_xml | – reference: Distefano J. Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals. J Cybern Inf Sci 1979; 2: 6-20. – reference: Chaudhuri P, Mykland PA. Nonlinear experiments: optimal design and inference based on likelihood. J Am Stat Assoc 1993; 88: 538-546. – reference: Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599-607. – reference: Chaudhuri P, Mykland PA. On efficient designing of nonlinear experiments. Stat Sin 1995; 5: 421-440. – reference: Xie J, Gallichan D, Gunn RN, Jezzard P. Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med 2008; 59: 826-834. – reference: Ford I, Titterington D, Kitsos C. Recent advances in nonlinear experimental design. Technometrics 1989; 31: 49-60. – reference: Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491-498. – reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680-687. – reference: Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee TY, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. Stroke 2008; 39: 1621-1628. – reference: Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708. – reference: Redpath TW, Smith FW. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 1994; 67: 1258-1263. – reference: Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998; 39: 855-864. – reference: Distefano J. Optimized blood sampling protocols and sequential design of kinetic experiments. Am J Physiol 1981; 240: R259-R265. – reference: Powell MJD. Direct search algorithms for optimization calculations. Acta Numerica 1998; 7: 287-336. – reference: Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465. – volume: 39 start-page: 1621 year: 2008 end-page: 1628 article-title: Acute stroke imaging research roadmap publication-title: Stroke – volume: 59 start-page: 826 year: 2008 end-page: 834 article-title: Optimal design of pulsed arterial spin labeling MRI experiments publication-title: Magn Reson Med – volume: 7 start-page: 287 year: 1998 end-page: 336 article-title: Direct search algorithms for optimization calculations publication-title: Acta Numerica – volume: 50 start-page: 599 year: 2003 end-page: 607 article-title: Arterial transit time imaging with flow encoding arterial spin tagging (FEAST) publication-title: Magn Reson Med – volume: 31 start-page: 680 year: 2000 end-page: 687 article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling publication-title: Stroke – volume: 54 start-page: 491 year: 2005 end-page: 498 article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med – volume: 2 start-page: 6 year: 1979 end-page: 20 article-title: Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals publication-title: J Cybern Inf Sci – volume: 31 start-page: 49 year: 1989 end-page: 60 article-title: Recent advances in nonlinear experimental design publication-title: Technometrics – volume: 88 start-page: 538 year: 1993 end-page: 546 article-title: Nonlinear experiments: optimal design and inference based on likelihood publication-title: J Am Stat Assoc – volume: 5 start-page: 421 year: 1995 end-page: 440 article-title: On efficient designing of nonlinear experiments publication-title: Stat Sin – volume: 44 start-page: 457 year: 2000 end-page: 465 article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI publication-title: Magn Reson Med – volume: 39 start-page: 855 year: 1998 end-page: 864 article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model publication-title: Magn Reson Med – volume: 240 start-page: R259 year: 1981 end-page: R265 article-title: Optimized blood sampling protocols and sequential design of kinetic experiments publication-title: Am J Physiol – volume: 39 start-page: 702 year: 1998 end-page: 708 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn Reson Med – volume: 67 start-page: 1258 year: 1994 end-page: 1263 article-title: Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter publication-title: Br J Radiol – ident: e_1_2_7_8_2 doi: 10.1080/01621459.1993.10476305 – volume: 2 start-page: 6 year: 1979 ident: e_1_2_7_4_2 article-title: Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals publication-title: J Cybern Inf Sci – ident: e_1_2_7_14_2 doi: 10.1161/STROKEAHA.107.512319 – ident: e_1_2_7_11_2 doi: 10.1002/mrm.10559 – ident: e_1_2_7_13_2 doi: 10.1161/01.STR.31.3.680 – ident: e_1_2_7_3_2 doi: 10.1002/mrm.21549 – ident: e_1_2_7_9_2 doi: 10.1017/S0962492900002841 – volume: 5 start-page: 421 year: 1995 ident: e_1_2_7_5_2 article-title: On efficient designing of nonlinear experiments publication-title: Stat Sin – ident: e_1_2_7_10_2 doi: 10.1002/mrm.1910390506 – ident: e_1_2_7_15_2 doi: 10.1259/0007-1285-67-804-1258 – ident: e_1_2_7_2_2 doi: 10.1002/mrm.1910390602 – ident: e_1_2_7_12_2 doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R – volume: 240 start-page: R259 year: 1981 ident: e_1_2_7_6_2 article-title: Optimized blood sampling protocols and sequential design of kinetic experiments publication-title: Am J Physiol – ident: e_1_2_7_7_2 doi: 10.1080/00401706.1989.10488475 – ident: e_1_2_7_16_2 doi: 10.1002/mrm.20580  | 
    
| SSID | ssj0009974 | 
    
| Score | 2.0437148 | 
    
| Snippet | An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework... An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework...  | 
    
| SourceID | unpaywall proquest pubmed crossref wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 203 | 
    
| SubjectTerms | adaptive sequential design Adult Algorithms arterial spin labeling Brain - blood supply Brain - diagnostic imaging Computer Simulation Female Humans Magnetic Resonance Imaging - methods Male Models, Biological MRI optimal design optimal sampling schedule perfusion Radiography Research Design Spin Labels  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRbwOPEop4SULEOol28RxXuKEEKUgtodARQ9I1sRxpKq72e3uRrSc-An9jf0ljO1NqqIWIW5WMlEcezz-HH_zGeAV1ljyksc-Cl75IisTKunc12kVqKyKqGwJsrvJzp74tB_vr8CbLhfG6UP0P9zMyLDx2gxwLOdb56Kh49l4wI16HcXfMErscqo4l47Kc6fAnAoTZ3LRqQoFfKt_8sJcdM006_FlQPM23GybKZ78wNHoIoa1k9D2XfjeVd9xTw4H7aIcqJ9_KDv-5_fdgztLcMreOm-6Dyu6WYMbw-X2-xpct3xRNX8AWBDAPPt1ao6mZ1jh1ERN5njZFDNGrLLMEEaQmE3o5pguoTpqDxxFjE1qZsmkxnQ-PWgYOaPNjGfD4iMztNV12Nt-__Xdjr88rcFXNKdlfq2CWGtCQ4TYSoVlGNZJLuISq7gSaYaiimvOFS18K5Oem6Rolk5KC02WAWbRQ1htJo1-BCwJa11jlhjlcJHXVBQa40hFIjWJwdqDza7fpFpKmZsTNUbSiTBzSY0nbeN58KI3nTr9jsuMXtvO7y1wdmgIb2ksv-1-kDyNi6IIPssvHrDOOyQNQ7O3go2etHOZRlS5hNDy1SaZkVrLeJh4sOEcq38fJ9RstOs8eNl72t-qu2kd52oLOSyGtvD4302fwC3HjDBU5Kewupi1-hkBrkX53I6s38pAJ00 priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-275RRR0L-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22398 https://www.ncbi.nlm.nih.gov/pubmed/20572144 https://www.proquest.com/docview/733476923 https://www.proquest.com/docview/883028216 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22398  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 64 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwEB1BK24PXJZbuKwsQGhfUlrXufRxhVgWRCsUqNh9Mo7tSKtt09A24vLEJ_CNfAkzdhqxaBch8WYlk8RxxuPj-PgMwBNVqJznPAqV4CYUaR5jyY5Cm5i-Ts0Qy44gO4n3p-L1QXTQ5DmlvTBeH6L94UY9w8Vr6uCVKXycb1b3-bP5ct7jpGB3HrpxhGC8A93p5O3uoRffpAjjUiHiIMVDBPpioy30-7UnRqQuNe6X0-DmFbhUl5X6-lnNZieRrBuK9q7Bx81LeAbKca9e5z397Q99x_94y-twtYGpbNf71Q04Z8stuDhuFuK34IJjjurVTVAZQs2f339QknqmjKoofjLP0MboMWPGcUQYgmO2wJNzPKT0p_rIk8XYomCOVkqmq-qoZOiWbo88G2evGBFYb8F078X75_thk7ch1Di6pWGh-5G1iIsQu-Va5YNBEY9ElCsTGZGkSpio4FzjFNjQRt04UTSJ0lZYtOyrdHgbOuWitHeBxYPCFiqNSUNcjAosCquioR6KhLYI2wB2Nt9O6kbUnHJrzKSXY-YSG0-6xgvgUWtaeSWP04yeOgdoLdTymKhvSSQ_TF5KnkRZlvXfyHcBsI2HSOyQtMqiSruoVzIZYuVixM1nm6QkupbyQRzAHe9c7fM44mdSsQvgcettf6vujnOesy3kOBu7wr1_uuF9uOzpEcRHfgCd9bK2DxF1rfNtnG9kfLvpX78AipwslQ | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qraCw4FFe4WkBQt1kmnGcl8QGIcoUJrMIrdoNshzHkarOZIaZiXis-AS-kS_hXmeSqqhFiJ2V3Ch-XNvH9rnHAC9UqXKe88BVgheuiPMQUyZxTVR4Oi58TFuC7CgcHIj3R8HRGrxqY2EafYhuw416hh2vqYPThvTOqWroZD7pcZKvuwQbIsR1CkGi7FQ8KkkaDeZI0EiTiFZXyOM73adnZqMNqtiv50HNa7BZVzP17Ysaj8-iWDsN7d6AT20BGvbJSa9e5j39_Q9tx_8t4U24vsKn7HXjULdgzVRbcCVdncBvwWVLGdWL26AyxJi_fvyk2-mZKtSMBk7WULNx2BizwpJDGKJiNsWXE3yk9Of6uGGJsWnJLJ-UTBez44qhP9rgeJZme4yYq3fgYPft_puBu7qwwdU4rcVuqb3AGARECNpyrfJ-vwwTEeSqCAoRxUoUQcm5xrVvQRG6YaRo9aSNMGjpqdi_C-vVtDL3gYX90pQqDkk8XCQlJoVRga99EVFssHFgu204qVdq5nSpxlg2OsxcYuVJW3kOPOtMZ42Ex3lGL23rdxZqfkKctyiQh6N3kkdBlmXeUH50gLXuIbEn0vGKqsy0XsjIx8yFCJgvNolJbS3m_dCBe41ndf_jCJxJvs6B552r_S2729ZzLraQaZbaxIN_N30Km4P9dCiHe6MPD-FqQ5QgZvIjWF_Oa_MY8dcyf2K72W8zUCtu | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrSiw4FFe4WkBQt1kmnHsPCQ2iDK00Bmh0IpukOXYjlR1JhNmJuKx4hP4Rr6Ea2eSqqhFiJ2V3Cixfe_1cXx8DPBMFjKnOeW-ZFT7LMkjLJnUN7EOVKJDLDuC7CjaOWBvD_nhCrxo98I0-hDdDzcbGS5f2wA3lS62TlRDJ7NJj1r5uguwxniaWELfdnYiHpWmjQZzzGymSVmrKxTQre7RU6PRmm3Yr2dBzStwqS4r-e2LHI9Po1g3DA2uwae2Ag375LhXL_Ke-v6HtuP_1vA6XF3iU_KycagbsGLKDVgfLlfgN-Cio4yq-U2QGWLMXz9-2tPpidSysomTNNRsTBtjoh05hCAqJlO8OcFLUn2ujxqWGJkWxPFJrem8OioJ-qPbHE-G2S6xzNVbcDB4vf9qx18e2OArHNYSv1ABNwYBEYK2XMm83y-ilPFcaq5ZnEimeUGpwrmvtjt0o1ja2ZMyzKBlIJPwNqyW09LcBRL1C1PIJLLi4SwtsMiM5KEKWWz3BhsPNtuOE2qpZm4P1RiLRoeZCmw84RrPgyedadVIeJxl9Nz1fmchZ8eW8xZz8XH0RtCYZ1kW7IkPHpDWPQRGol1ekaWZ1nMRh_hxEQLm800Sq7aW0H7kwZ3Gs7r3UQTOVr7Og6edq_3tczed55xvIYbZ0BXu_bvpY1h_vz0Qe7ujd_fhcsOTsMTkB7C6mNXmIcKvRf7IRdlvocwq8g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwEB1BK1h44LIsEG6yAKF9SWldO0kfV4hlQbRCgYrlyTiOI622TUPbiMsTn8A38iXM2GnEol2ExJuVTBLHGY-P4-MzAI91oTOecRlqwfNQJFmEJTsKbZz3TZIPsewIspPoYCpeHcrDJs8p7YXx-hDtDzfqGS5eUwev8sLH-WZ1nz-dL-c9Tgp256EbSQTjHehOJ2_2PnjxTYowLhUiDlI8RKAvNtpCv197YkTqUuN-OQ1uXoatuqz01896NjuJZN1QtH8VPm5ewjNQjnv1OuuZb3_oO_7HW16DKw1MZXver67DOVtuw8VxsxC_DRccc9SsboBOEWr-_P6DktQzneuK4ifzDG2MHjOWO44IQ3DMFnhyjoe0-VQfebIYWxTM0UrJdFUdlQzd0u2RZ-P0JSMC6w5M95-_e3YQNnkbQoOjWxIWpi-tRVyE2C0zOhsMimgkZKZzmYs40SKXBecGp8A5bdSNYk2TKGOFRcu-ToY3oVMuSnsbWDQobKGTiDTExajAorBaDs1QxLRF2Aawu_l2yjSi5pRbY6a8HDNX2HjKNV4AD1vTyit5nGb0xDlAa6GXx0R9i6V6P3mheCzTNO2_Vm8DYBsPUdghaZVFl3ZRr1Q8xMpFiJvPNklIdC3hgyiAW9652udxxM-kYhfAo9bb_lbdXec8Z1uocTp2hTv_dMO7cMnTI4iPfA8662Vt7yPqWmcPmp71C4T7K6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+adaptive+sequential+design+for+optimal+acquisition+of+arterial+spin+labeling+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Xie%2C+Jingyi&rft.au=Clare%2C+Stuart&rft.au=Gallichan%2C+Daniel&rft.au=Gunn%2C+Roger+N.&rft.date=2010-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=64&rft.issue=1&rft.spage=203&rft.epage=210&rft_id=info:doi/10.1002%2Fmrm.22398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_22398 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |