Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data

An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 64; no. 1; pp. 203 - 210
Main Authors Xie, Jingyi, Clare, Stuart, Gallichan, Daniel, Gunn, Roger N., Jezzard, Peter
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2010
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.22398

Cover

Abstract An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real‐time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. [copy 2010 Wiley-Liss, Inc.
An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time.
An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time.An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi-inversion-time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real-time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time.
An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework for optimizing inversion time scheduling for multi‐inversion‐time arterial spin labeling experiments. Optimal sampling schedule possesses the primary advantage of improving parameter estimation precision but requires a priori estimation of plausible parameter distributions that may not be available in all situations. An adaptive sequential design approach addresses this issue by incorporating the optimal sampling schedule strategy into an adaptive process that iteratively updates the parameter estimates and adjusts the optimal sampling schedule accordingly as data are acquired. In this study, the adaptive sequential design method was experimentally implemented with a real‐time feedback scheme on a clinical MRI scanner and was tested in six normal volunteers. Adapted schedules were found to accommodate the intrinsically prolonged arterial transit times in the occipital lobe of the brain. Simulation of applying the adaptive sequential design approach on subjects with pathologically reduced perfusion was also implemented. Simulation results show that the adaptive sequential design approach is capable of incorporating pathologic parameter information into an optimal arterial spin labeling scheduling design within a clinically useful experimental time. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
Author Clare, Stuart
Xie, Jingyi
Jezzard, Peter
Gallichan, Daniel
Gunn, Roger N.
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Xie
  fullname: Xie, Jingyi
  email: jxie@fmrib.ox.ac.uk
  organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Stuart
  surname: Clare
  fullname: Clare, Stuart
  organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK
– sequence: 3
  givenname: Daniel
  surname: Gallichan
  fullname: Gallichan, Daniel
  organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK
– sequence: 4
  givenname: Roger N.
  surname: Gunn
  fullname: Gunn, Roger N.
  organization: Department of Engineering Science, University of Oxford, Oxford, UK
– sequence: 5
  givenname: Peter
  surname: Jezzard
  fullname: Jezzard, Peter
  organization: Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20572144$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtv1DAURi1URKeFBX8AeYeolNbPOFmiqpRKMyAFEEvrJrmpDM6jtkOZf98M03aBRFlZuj7ffZwjcjCMAxLymrNTzpg460N_KoQsi2dkxbUQmdClOiArZhTLJC_VITmK8QdjrCyNekEOBdNGcKVWxFYIPkuuRwotTMn9QhrxZsYhOfC0xeiuB9qNgY7LZ7-UoLmZXXTJjQMdOwohYdihcXID9VCjd8M13VRXtIUEL8nzDnzEV_fvMfn24eLr-cds_fny6vz9OmuUKIusa5hGFEZypusGas67vFS6hla3yhSgWt0J0WghWyF1kRtgeZ43qHAhGRTymJzs-87DBNtb8N5OYdk3bC1ndmfJLpbsH0sL_HYPT2FcTo3J9i426D0MOM7RFoVkohA8_y9ppFQmL4VcyDf35Fz32D5Of1C9AO_2QBPGGAN2Ty549hfbuAQ75SmA808lbp3H7b9b2021eUhk-4SLCX8_JiD8tLmRRtvvny6tMLqqKra2X-QdTzW8Dw
CitedBy_id crossref_primary_10_1371_journal_pcbi_1002280
crossref_primary_10_1002_mrm_25333
crossref_primary_10_1109_TBME_2011_2164916
crossref_primary_10_1016_j_neuroimage_2020_117246
crossref_primary_10_1002_mrm_22922
crossref_primary_10_1002_nbm_1693
crossref_primary_10_1016_j_neuroimage_2011_01_045
crossref_primary_10_1027_2151_2604_a000145
crossref_primary_10_1016_j_zemedi_2014_07_003
crossref_primary_10_1038_jcbfm_2014_163
crossref_primary_10_1093_gji_ggv329
crossref_primary_10_1002_mrm_30091
Cites_doi 10.1080/01621459.1993.10476305
10.1161/STROKEAHA.107.512319
10.1002/mrm.10559
10.1161/01.STR.31.3.680
10.1002/mrm.21549
10.1017/S0962492900002841
10.1002/mrm.1910390506
10.1259/0007-1285-67-804-1258
10.1002/mrm.1910390602
10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
10.1080/00401706.1989.10488475
10.1002/mrm.20580
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
(c) 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: (c) 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ADTOC
UNPAY
DOI 10.1002/mrm.22398
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 210
ExternalDocumentID 10.1002/mrm.22398
20572144
10_1002_mrm_22398
MRM22398
ark_67375_WNG_275RRR0L_S
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council for additional research
– fundername: Medical Research Council
  grantid: G0802179
– fundername: Medical Research Council
  grantid: G0700399
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ADTOC
UNPAY
ID FETCH-LOGICAL-c4298-fc05ee273105bcab11f6945bad5d478a4d5f22c523d235867a0666ce4e11f0a83
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Tue Aug 19 17:45:51 EDT 2025
Mon Oct 06 18:08:39 EDT 2025
Thu Sep 04 20:05:14 EDT 2025
Mon Jul 21 05:15:21 EDT 2025
Wed Oct 01 02:05:00 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Wed Jan 22 16:57:11 EST 2025
Sun Sep 21 06:14:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License (c) 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4298-fc05ee273105bcab11f6945bad5d478a4d5f22c523d235867a0666ce4e11f0a83
Notes Medical Research Council for additional research
ArticleID:MRM22398
M: male. F: female. yr: year.
istex:96BF3784FE7A7608DAAA477AA902B937B7B5BC70
ark:/67375/WNG-275RRR0L-S
Dr. Xie and Dr. Clare share joint first authorship for this paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22398
PMID 20572144
PQID 733476923
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mrm_22398
proquest_miscellaneous_883028216
proquest_miscellaneous_733476923
pubmed_primary_20572144
crossref_primary_10_1002_mrm_22398
crossref_citationtrail_10_1002_mrm_22398
wiley_primary_10_1002_mrm_22398_MRM22398
istex_primary_ark_67375_WNG_275RRR0L_S
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Powell MJD. Direct search algorithms for optimization calculations. Acta Numerica 1998; 7: 287-336.
Distefano J. Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals. J Cybern Inf Sci 1979; 2: 6-20.
Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599-607.
Chaudhuri P, Mykland PA. On efficient designing of nonlinear experiments. Stat Sin 1995; 5: 421-440.
Distefano J. Optimized blood sampling protocols and sequential design of kinetic experiments. Am J Physiol 1981; 240: R259-R265.
Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680-687.
Xie J, Gallichan D, Gunn RN, Jezzard P. Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med 2008; 59: 826-834.
Ford I, Titterington D, Kitsos C. Recent advances in nonlinear experimental design. Technometrics 1989; 31: 49-60.
Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465.
Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998; 39: 855-864.
Redpath TW, Smith FW. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 1994; 67: 1258-1263.
Chaudhuri P, Mykland PA. Nonlinear experiments: optimal design and inference based on likelihood. J Am Stat Assoc 1993; 88: 538-546.
Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491-498.
Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee TY, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. Stroke 2008; 39: 1621-1628.
Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708.
1998; 39
1989; 31
1993; 88
1981; 240
2000; 44
2000; 31
2008; 39
1994; 67
2008; 59
2005; 54
1979; 2
1998; 7
2003; 50
1995; 5
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Distefano J (e_1_2_7_4_2) 1979; 2
Chaudhuri P (e_1_2_7_5_2) 1995; 5
Distefano J (e_1_2_7_6_2) 1981; 240
References_xml – reference: Distefano J. Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals. J Cybern Inf Sci 1979; 2: 6-20.
– reference: Chaudhuri P, Mykland PA. Nonlinear experiments: optimal design and inference based on likelihood. J Am Stat Assoc 1993; 88: 538-546.
– reference: Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599-607.
– reference: Chaudhuri P, Mykland PA. On efficient designing of nonlinear experiments. Stat Sin 1995; 5: 421-440.
– reference: Xie J, Gallichan D, Gunn RN, Jezzard P. Optimal design of pulsed arterial spin labeling MRI experiments. Magn Reson Med 2008; 59: 826-834.
– reference: Ford I, Titterington D, Kitsos C. Recent advances in nonlinear experimental design. Technometrics 1989; 31: 49-60.
– reference: Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491-498.
– reference: Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680-687.
– reference: Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron JC, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee TY, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S. Acute stroke imaging research roadmap. Stroke 2008; 39: 1621-1628.
– reference: Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702-708.
– reference: Redpath TW, Smith FW. Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter. Br J Radiol 1994; 67: 1258-1263.
– reference: Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998; 39: 855-864.
– reference: Distefano J. Optimized blood sampling protocols and sequential design of kinetic experiments. Am J Physiol 1981; 240: R259-R265.
– reference: Powell MJD. Direct search algorithms for optimization calculations. Acta Numerica 1998; 7: 287-336.
– reference: Thesen S, Heid O, Mueller E, Schad LR. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 2000; 44: 457-465.
– volume: 39
  start-page: 1621
  year: 2008
  end-page: 1628
  article-title: Acute stroke imaging research roadmap
  publication-title: Stroke
– volume: 59
  start-page: 826
  year: 2008
  end-page: 834
  article-title: Optimal design of pulsed arterial spin labeling MRI experiments
  publication-title: Magn Reson Med
– volume: 7
  start-page: 287
  year: 1998
  end-page: 336
  article-title: Direct search algorithms for optimization calculations
  publication-title: Acta Numerica
– volume: 50
  start-page: 599
  year: 2003
  end-page: 607
  article-title: Arterial transit time imaging with flow encoding arterial spin tagging (FEAST)
  publication-title: Magn Reson Med
– volume: 31
  start-page: 680
  year: 2000
  end-page: 687
  article-title: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling
  publication-title: Stroke
– volume: 54
  start-page: 491
  year: 2005
  end-page: 498
  article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
– volume: 2
  start-page: 6
  year: 1979
  end-page: 20
  article-title: Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals
  publication-title: J Cybern Inf Sci
– volume: 31
  start-page: 49
  year: 1989
  end-page: 60
  article-title: Recent advances in nonlinear experimental design
  publication-title: Technometrics
– volume: 88
  start-page: 538
  year: 1993
  end-page: 546
  article-title: Nonlinear experiments: optimal design and inference based on likelihood
  publication-title: J Am Stat Assoc
– volume: 5
  start-page: 421
  year: 1995
  end-page: 440
  article-title: On efficient designing of nonlinear experiments
  publication-title: Stat Sin
– volume: 44
  start-page: 457
  year: 2000
  end-page: 465
  article-title: Prospective acquisition correction for head motion with image‐based tracking for real‐time fMRI
  publication-title: Magn Reson Med
– volume: 39
  start-page: 855
  year: 1998
  end-page: 864
  article-title: Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
  publication-title: Magn Reson Med
– volume: 240
  start-page: R259
  year: 1981
  end-page: R265
  article-title: Optimized blood sampling protocols and sequential design of kinetic experiments
  publication-title: Am J Physiol
– volume: 39
  start-page: 702
  year: 1998
  end-page: 708
  article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II)
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1258
  year: 1994
  end-page: 1263
  article-title: Technical note: use of a double inversion recovery pulse sequence to image selectively grey or white brain matter
  publication-title: Br J Radiol
– ident: e_1_2_7_8_2
  doi: 10.1080/01621459.1993.10476305
– volume: 2
  start-page: 6
  year: 1979
  ident: e_1_2_7_4_2
  article-title: Matching the model and the experiment to the goal: data limitations, complexity and optimal experiment design for dynamic systems with biochemical signals
  publication-title: J Cybern Inf Sci
– ident: e_1_2_7_14_2
  doi: 10.1161/STROKEAHA.107.512319
– ident: e_1_2_7_11_2
  doi: 10.1002/mrm.10559
– ident: e_1_2_7_13_2
  doi: 10.1161/01.STR.31.3.680
– ident: e_1_2_7_3_2
  doi: 10.1002/mrm.21549
– ident: e_1_2_7_9_2
  doi: 10.1017/S0962492900002841
– volume: 5
  start-page: 421
  year: 1995
  ident: e_1_2_7_5_2
  article-title: On efficient designing of nonlinear experiments
  publication-title: Stat Sin
– ident: e_1_2_7_10_2
  doi: 10.1002/mrm.1910390506
– ident: e_1_2_7_15_2
  doi: 10.1259/0007-1285-67-804-1258
– ident: e_1_2_7_2_2
  doi: 10.1002/mrm.1910390602
– ident: e_1_2_7_12_2
  doi: 10.1002/1522-2594(200009)44:3<457::AID-MRM17>3.0.CO;2-R
– volume: 240
  start-page: R259
  year: 1981
  ident: e_1_2_7_6_2
  article-title: Optimized blood sampling protocols and sequential design of kinetic experiments
  publication-title: Am J Physiol
– ident: e_1_2_7_7_2
  doi: 10.1080/00401706.1989.10488475
– ident: e_1_2_7_16_2
  doi: 10.1002/mrm.20580
SSID ssj0009974
Score 2.0437148
Snippet An optimal sampling schedule strategy based on the Fisher information matrix and the D‐optimality criterion has previously been proposed as a formal framework...
An optimal sampling schedule strategy based on the Fisher information matrix and the D-optimality criterion has previously been proposed as a formal framework...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms adaptive sequential design
Adult
Algorithms
arterial spin labeling
Brain - blood supply
Brain - diagnostic imaging
Computer Simulation
Female
Humans
Magnetic Resonance Imaging - methods
Male
Models, Biological
MRI
optimal design
optimal sampling schedule
perfusion
Radiography
Research Design
Spin Labels
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRbwOPEop4SULEOol28RxXuKEEKUgtodARQ9I1sRxpKq72e3uRrSc-An9jf0ljO1NqqIWIW5WMlEcezz-HH_zGeAV1ljyksc-Cl75IisTKunc12kVqKyKqGwJsrvJzp74tB_vr8CbLhfG6UP0P9zMyLDx2gxwLOdb56Kh49l4wI16HcXfMErscqo4l47Kc6fAnAoTZ3LRqQoFfKt_8sJcdM006_FlQPM23GybKZ78wNHoIoa1k9D2XfjeVd9xTw4H7aIcqJ9_KDv-5_fdgztLcMreOm-6Dyu6WYMbw-X2-xpct3xRNX8AWBDAPPt1ao6mZ1jh1ERN5njZFDNGrLLMEEaQmE3o5pguoTpqDxxFjE1qZsmkxnQ-PWgYOaPNjGfD4iMztNV12Nt-__Xdjr88rcFXNKdlfq2CWGtCQ4TYSoVlGNZJLuISq7gSaYaiimvOFS18K5Oem6Rolk5KC02WAWbRQ1htJo1-BCwJa11jlhjlcJHXVBQa40hFIjWJwdqDza7fpFpKmZsTNUbSiTBzSY0nbeN58KI3nTr9jsuMXtvO7y1wdmgIb2ksv-1-kDyNi6IIPssvHrDOOyQNQ7O3go2etHOZRlS5hNDy1SaZkVrLeJh4sOEcq38fJ9RstOs8eNl72t-qu2kd52oLOSyGtvD4302fwC3HjDBU5Kewupi1-hkBrkX53I6s38pAJ00
  priority: 102
  providerName: Wiley-Blackwell
Title Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data
URI https://api.istex.fr/ark:/67375/WNG-275RRR0L-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22398
https://www.ncbi.nlm.nih.gov/pubmed/20572144
https://www.proquest.com/docview/733476923
https://www.proquest.com/docview/883028216
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22398
UnpaywallVersion publishedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwEB1BK24PXJZbuKwsQGhfUlrXufRxhVgWRCsUqNh9Mo7tSKtt09A24vLEJ_CNfAkzdhqxaBch8WYlk8RxxuPj-PgMwBNVqJznPAqV4CYUaR5jyY5Cm5i-Ts0Qy44gO4n3p-L1QXTQ5DmlvTBeH6L94UY9w8Vr6uCVKXycb1b3-bP5ct7jpGB3HrpxhGC8A93p5O3uoRffpAjjUiHiIMVDBPpioy30-7UnRqQuNe6X0-DmFbhUl5X6-lnNZieRrBuK9q7Bx81LeAbKca9e5z397Q99x_94y-twtYGpbNf71Q04Z8stuDhuFuK34IJjjurVTVAZQs2f339QknqmjKoofjLP0MboMWPGcUQYgmO2wJNzPKT0p_rIk8XYomCOVkqmq-qoZOiWbo88G2evGBFYb8F078X75_thk7ch1Di6pWGh-5G1iIsQu-Va5YNBEY9ElCsTGZGkSpio4FzjFNjQRt04UTSJ0lZYtOyrdHgbOuWitHeBxYPCFiqNSUNcjAosCquioR6KhLYI2wB2Nt9O6kbUnHJrzKSXY-YSG0-6xgvgUWtaeSWP04yeOgdoLdTymKhvSSQ_TF5KnkRZlvXfyHcBsI2HSOyQtMqiSruoVzIZYuVixM1nm6QkupbyQRzAHe9c7fM44mdSsQvgcettf6vujnOesy3kOBu7wr1_uuF9uOzpEcRHfgCd9bK2DxF1rfNtnG9kfLvpX78AipwslQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qraCw4FFe4WkBQt1kmnGcl8QGIcoUJrMIrdoNshzHkarOZIaZiXis-AS-kS_hXmeSqqhFiJ2V3Ch-XNvH9rnHAC9UqXKe88BVgheuiPMQUyZxTVR4Oi58TFuC7CgcHIj3R8HRGrxqY2EafYhuw416hh2vqYPThvTOqWroZD7pcZKvuwQbIsR1CkGi7FQ8KkkaDeZI0EiTiFZXyOM73adnZqMNqtiv50HNa7BZVzP17Ysaj8-iWDsN7d6AT20BGvbJSa9e5j39_Q9tx_8t4U24vsKn7HXjULdgzVRbcCVdncBvwWVLGdWL26AyxJi_fvyk2-mZKtSMBk7WULNx2BizwpJDGKJiNsWXE3yk9Of6uGGJsWnJLJ-UTBez44qhP9rgeJZme4yYq3fgYPft_puBu7qwwdU4rcVuqb3AGARECNpyrfJ-vwwTEeSqCAoRxUoUQcm5xrVvQRG6YaRo9aSNMGjpqdi_C-vVtDL3gYX90pQqDkk8XCQlJoVRga99EVFssHFgu204qVdq5nSpxlg2OsxcYuVJW3kOPOtMZ42Ex3lGL23rdxZqfkKctyiQh6N3kkdBlmXeUH50gLXuIbEn0vGKqsy0XsjIx8yFCJgvNolJbS3m_dCBe41ndf_jCJxJvs6B552r_S2729ZzLraQaZbaxIN_N30Km4P9dCiHe6MPD-FqQ5QgZvIjWF_Oa_MY8dcyf2K72W8zUCtu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qrSiw4FFe4WkBQt1kmnHsPCQ2iDK00Bmh0IpukOXYjlR1JhNmJuKx4hP4Rr6Ea2eSqqhFiJ2V3Cixfe_1cXx8DPBMFjKnOeW-ZFT7LMkjLJnUN7EOVKJDLDuC7CjaOWBvD_nhCrxo98I0-hDdDzcbGS5f2wA3lS62TlRDJ7NJj1r5uguwxniaWELfdnYiHpWmjQZzzGymSVmrKxTQre7RU6PRmm3Yr2dBzStwqS4r-e2LHI9Po1g3DA2uwae2Ag375LhXL_Ke-v6HtuP_1vA6XF3iU_KycagbsGLKDVgfLlfgN-Cio4yq-U2QGWLMXz9-2tPpidSysomTNNRsTBtjoh05hCAqJlO8OcFLUn2ujxqWGJkWxPFJrem8OioJ-qPbHE-G2S6xzNVbcDB4vf9qx18e2OArHNYSv1ABNwYBEYK2XMm83y-ilPFcaq5ZnEimeUGpwrmvtjt0o1ja2ZMyzKBlIJPwNqyW09LcBRL1C1PIJLLi4SwtsMiM5KEKWWz3BhsPNtuOE2qpZm4P1RiLRoeZCmw84RrPgyedadVIeJxl9Nz1fmchZ8eW8xZz8XH0RtCYZ1kW7IkPHpDWPQRGol1ekaWZ1nMRh_hxEQLm800Sq7aW0H7kwZ3Gs7r3UQTOVr7Og6edq_3tczed55xvIYbZ0BXu_bvpY1h_vz0Qe7ujd_fhcsOTsMTkB7C6mNXmIcKvRf7IRdlvocwq8g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bjtMwEB1BK1h44LIsEG6yAKF9SWldO0kfV4hlQbRCgYrlyTiOI622TUPbiMsTn8A38iXM2GnEol2ExJuVTBLHGY-P4-MzAI91oTOecRlqwfNQJFmEJTsKbZz3TZIPsewIspPoYCpeHcrDJs8p7YXx-hDtDzfqGS5eUwev8sLH-WZ1nz-dL-c9Tgp256EbSQTjHehOJ2_2PnjxTYowLhUiDlI8RKAvNtpCv197YkTqUuN-OQ1uXoatuqz01896NjuJZN1QtH8VPm5ewjNQjnv1OuuZb3_oO_7HW16DKw1MZXver67DOVtuw8VxsxC_DRccc9SsboBOEWr-_P6DktQzneuK4ifzDG2MHjOWO44IQ3DMFnhyjoe0-VQfebIYWxTM0UrJdFUdlQzd0u2RZ-P0JSMC6w5M95-_e3YQNnkbQoOjWxIWpi-tRVyE2C0zOhsMimgkZKZzmYs40SKXBecGp8A5bdSNYk2TKGOFRcu-ToY3oVMuSnsbWDQobKGTiDTExajAorBaDs1QxLRF2Aawu_l2yjSi5pRbY6a8HDNX2HjKNV4AD1vTyit5nGb0xDlAa6GXx0R9i6V6P3mheCzTNO2_Vm8DYBsPUdghaZVFl3ZRr1Q8xMpFiJvPNklIdC3hgyiAW9652udxxM-kYhfAo9bb_lbdXec8Z1uocTp2hTv_dMO7cMnTI4iPfA8662Vt7yPqWmcPmp71C4T7K6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+adaptive+sequential+design+for+optimal+acquisition+of+arterial+spin+labeling+MRI+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Xie%2C+Jingyi&rft.au=Clare%2C+Stuart&rft.au=Gallichan%2C+Daniel&rft.au=Gunn%2C+Roger+N.&rft.date=2010-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=64&rft.issue=1&rft.spage=203&rft.epage=210&rft_id=info:doi/10.1002%2Fmrm.22398&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_22398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon