Discovering cognitive strategies with tiny recurrent neural networks
Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behavi...
Saved in:
| Published in | Nature (London) Vol. 644; no. 8078; pp. 993 - 1001 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
28.08.2025
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-0836 1476-4687 1476-4687 |
| DOI | 10.1038/s41586-025-09142-4 |
Cover
| Abstract | Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference
1
and reinforcement learning
2
provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour
3
and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.
Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms. |
|---|---|
| AbstractList | Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference
and reinforcement learning
provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour
and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms. Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour 3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms. Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour 3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. |
| Author | Ji-An, Li Benna, Marcus K. Mattar, Marcelo G. |
| Author_xml | – sequence: 1 givenname: Li surname: Ji-An fullname: Ji-An, Li organization: Department of Neurobiology, School of Biological Sciences, University of California San Diego – sequence: 2 givenname: Marcus K. orcidid: 0000-0001-8100-2857 surname: Benna fullname: Benna, Marcus K. organization: Department of Neurobiology, School of Biological Sciences, University of California San Diego – sequence: 3 givenname: Marcelo G. orcidid: 0000-0003-3303-2490 surname: Mattar fullname: Mattar, Marcelo G. email: marcelo.mattar@nyu.edu organization: Department of Psychology, New York University, Center for Neural Science, New York University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40604278$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v1DAQxS1URLeFL8ABReLCJeA_E8c5IdTSUqkSl_ZsOfZk65K1FzvZ1X57XHYplAPiNAe_9_zmNyfkKMSAhLxm9D2jQn3IwBola8qbmnYMeA3PyIJBK2uQqj0iC0q5qqkS8pic5HxPKW1YCy_IMVBJgbdqQc7PfbZxg8mHZWXjMvjJb7DKUzITLj3mauunu2ryYVcltHNKGKYq4JzMWMa0jelbfkmeD2bM-OowT8ntxeebsy_19dfLq7NP17UFrqbaogPD-t4ooYRo-xb7zg6dG5zkinWMOgGOIQU32IYa5uxgBm4Uta4XiFKcErHPncPa7LZmHPU6-ZVJO82ofmCi90x0YaJ_MtFQXB_3rvXcr9DZskAp_-iMxuunL8Hf6WXcaMZFRxV0JeHdISHF7zPmSa8KNRxHEzDOWQvOZcukAlWkb_-S3sc5hUKlqACYhAZYUb35s9Jjl193KQK-F9gUc044_N-iBzx5_XBOTL___ofrB7IhsdQ |
| Cites_doi | 10.5281/zenodo.4041459 10.7554/eLife.64575 10.1371/journal.pcbi.1004648 10.7554/eLife.49547 10.1016/j.cell.2020.10.024 10.6084/m9.figshare.20449140.v2 10.1038/s41467-024-50503-w 10.1126/science.1192788 10.1016/j.jmp.2008.12.005 10.3115/v1/W14-4012 10.1038/s41593-018-0310-2 10.1016/j.neuron.2005.04.026 10.1073/pnas.2021860119 10.1038/s41593-019-0520-2 10.1073/pnas.2205791119 10.1038/s41593-022-01088-4 10.1038/s43588-022-00281-6 10.1111/j.1460-9568.2011.07980.x 10.1126/science.abe2629 10.1016/j.neuron.2021.12.018 10.1016/j.neuron.2020.09.005 10.31234/osf.io/aqc9n 10.7551/mitpress/5237.001.0001 10.1016/j.isci.2022.105856 10.3389/fncom.2021.678158 10.1007/978-0-387-84858-7 10.1038/s41586-018-0102-6 10.1038/s41593-019-0518-9 10.17605/osf.io/8jwhm 10.7554/eLife.11305 10.1016/j.neuron.2020.03.024 10.1007/s11263-021-01453-z 10.1162/neco_a_01381 10.1016/S0167-7152(96)00128-9 10.1073/pnas.1403112111 10.1371/journal.pcbi.1007514 10.1214/aos/1176344136 10.1371/journal.pcbi.1006903 10.1016/j.neuron.2020.10.013 10.1038/s41562-021-01176-8 10.1016/j.conb.2021.08.002 10.1038/s41593-018-0147-8 10.1016/j.neuron.2018.07.003 10.1145/1283920.1283930 10.1162/neco.1997.9.8.1735 10.1523/JNEUROSCI.0822-10.2010 10.1038/nature04766 10.1038/s41562-022-01510-8 10.1038/nn.4244 10.1038/s41593-025-01869-7 10.1038/nn1954 10.1016/j.neuron.2011.02.027 10.17605/osf.io/f3t2a 10.1146/annurev.neuro.051508.135409 10.17632/p7ft2bvphx.1 10.1038/s41562-020-0905-y 10.1017/S0140525X16001837 10.1109/TAC.1974.1100705 10.1038/s41593-024-01675-7 10.1038/s42256-022-00464-w 10.1016/j.tics.2019.02.006 10.1145/1150402.1150464 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1038/s41586-025-09142-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 1001 |
| ExternalDocumentID | 10.1038/s41586-025-09142-4 PMC12390849 40604278 10_1038_s41586_025_09142_4 |
| Genre | Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AARCD AASDW AAYEP AAYZH ABDQB ABFSG ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACSTC ACWUS ADBBV ADFRT ADUKH AENEX AEZWR AFANA AFBBN AFFNX AFHIU AFKWF AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AGSTI AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NAPCQ NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TUS TWZ U5U UKR UMD UQL VVN WH7 X7M XIH XKW XZL Y6R YAE YFH YJ6 YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~88 ~KM AAYXX ABUFD CITATION .-4 .GJ .HR 00M 08P 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 53G 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESTFP ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 5PM ABAWZ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c428t-ced4a1bba838337b7eb9cf9dfd6281910d34d1e04dfc50a1dcfaf2a80cdb3ee63 |
| IEDL.DBID | UNPAY |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Aug 19 23:37:24 EDT 2025 Tue Sep 30 17:00:38 EDT 2025 Fri Sep 05 15:44:50 EDT 2025 Tue Oct 07 06:15:01 EDT 2025 Wed Oct 08 04:12:08 EDT 2025 Thu Oct 09 00:20:34 EDT 2025 Sat Oct 04 02:32:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8078 |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c428t-ced4a1bba838337b7eb9cf9dfd6281910d34d1e04dfc50a1dcfaf2a80cdb3ee63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8100-2857 0000-0003-3303-2490 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41586-025-09142-4.pdf |
| PMID | 40604278 |
| PQID | 3244164541 |
| PQPubID | 40569 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1038_s41586_025_09142_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12390849 proquest_miscellaneous_3226716848 proquest_journals_3244164541 pubmed_primary_40604278 crossref_primary_10_1038_s41586_025_09142_4 springer_journals_10_1038_s41586_025_09142_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-28 |
| PublicationDateYYYYMMDD | 2025-08-28 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | K Miller (9142_CR47) 2023; 36 Y Wu (9142_CR60) 2016; 29 ND Daw (9142_CR51) 2011; 69 JB Tenenbaum (9142_CR1) 2011; 331 P Suthaharan (9142_CR53) 2021; 5 RC Wilson (9142_CR13) 2019; 8 M Jazayeri (9142_CR67) 2021; 70 M Botvinick (9142_CR7) 2019; 23 JY Angela (9142_CR37) 2005; 46 R Bartolo (9142_CR48) 2020; 16 9142_CR54 R Bartolo (9142_CR10) 2020; 106 BA Richards (9142_CR15) 2019; 22 V Mnih (9142_CR72) 2016; 48 9142_CR52 9142_CR50 PR Vlachas (9142_CR45) 2022; 4 CF da Silva (9142_CR14) 2020; 4 B Chen (9142_CR44) 2022; 2 S Ganguli (9142_CR32) 2022; 119 ID Jordan (9142_CR46) 2021; 15 9142_CR59 9142_CR57 9142_CR5 9142_CR4 Y Niv (9142_CR2) 2009; 53 CM Gillan (9142_CR56) 2016; 5 T Akam (9142_CR11) 2021; 109 9142_CR19 M Beiran (9142_CR40) 2021; 33 AGE Collins (9142_CR61) 2012; 35 9142_CR65 G Schwarz (9142_CR64) 1978; 6 9142_CR29 A Dubreuil (9142_CR42) 2022; 25 GR Yang (9142_CR24) 2019; 22 DLK Yamins (9142_CR17) 2014; 111 9142_CR25 9142_CR69 9142_CR68 KJ Miller (9142_CR12) 2022; 11 JE Cavanaugh (9142_CR63) 1997; 33 JC Peterson (9142_CR27) 2021; 372 C Langdon (9142_CR43) 2025; 28 W Bialek (9142_CR3) 2022; 119 A Dezfouli (9142_CR28) 2019; 15 TEJ Behrens (9142_CR35) 2007; 10 P Cisek (9142_CR8) 2010; 33 J Gou (9142_CR33) 2021; 129 KT Jensen (9142_CR26) 2024; 27 A Banino (9142_CR20) 2018; 557 9142_CR31 MR Nassar (9142_CR36) 2010; 30 9142_CR71 9142_CR70 H Akaike (9142_CR62) 1974; 19 DLK Yamins (9142_CR18) 2016; 19 S Hochreiter (9142_CR58) 1997; 9 PI Jaffe (9142_CR30) 2023; 7 T Akam (9142_CR34) 2015; 11 MG Mattar (9142_CR9) 2022; 110 GR Yang (9142_CR16) 2020; 107 JCR Whittington (9142_CR21) 2020; 183 ND Daw (9142_CR55) 2006; 441 C Findling (9142_CR38) 2019; 22 S Watanabe (9142_CR66) 2013; 14 V Fascianelli (9142_CR23) 2024; 15 F Mastrogiuseppe (9142_CR39) 2018; 99 A Valente (9142_CR41) 2022; 35 BM Lake (9142_CR6) 2017; 40 JX Wang (9142_CR22) 2018; 21 9142_CR49 |
| References_xml | – volume: 36 start-page: 61377 year: 2023 ident: 9142_CR47 publication-title: Adv. Neural Inf. Process. Syst. – ident: 9142_CR70 doi: 10.5281/zenodo.4041459 – volume: 11 start-page: e64575 year: 2022 ident: 9142_CR12 publication-title: eLife doi: 10.7554/eLife.64575 – volume: 11 start-page: e1004648 year: 2015 ident: 9142_CR34 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004648 – volume: 8 start-page: e49547 year: 2019 ident: 9142_CR13 publication-title: eLife doi: 10.7554/eLife.49547 – volume: 183 start-page: 1249 year: 2020 ident: 9142_CR21 publication-title: Cell doi: 10.1016/j.cell.2020.10.024 – ident: 9142_CR52 doi: 10.6084/m9.figshare.20449140.v2 – volume: 15 start-page: 6479 year: 2024 ident: 9142_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-024-50503-w – volume: 331 start-page: 1279 year: 2011 ident: 9142_CR1 publication-title: Science doi: 10.1126/science.1192788 – volume: 53 start-page: 139 year: 2009 ident: 9142_CR2 publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2008.12.005 – ident: 9142_CR31 doi: 10.3115/v1/W14-4012 – volume: 22 start-page: 297 year: 2019 ident: 9142_CR24 publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0310-2 – volume: 46 start-page: 681 year: 2005 ident: 9142_CR37 publication-title: Neuron doi: 10.1016/j.neuron.2005.04.026 – volume: 119 start-page: e2021860119 year: 2022 ident: 9142_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2021860119 – volume: 22 start-page: 1761 year: 2019 ident: 9142_CR15 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0520-2 – volume: 119 start-page: e2205791119 year: 2022 ident: 9142_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2205791119 – volume: 25 start-page: 783 year: 2022 ident: 9142_CR42 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01088-4 – volume: 2 start-page: 433 year: 2022 ident: 9142_CR44 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00281-6 – volume: 35 start-page: 1024 year: 2012 ident: 9142_CR61 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2011.07980.x – volume: 372 start-page: 1209 year: 2021 ident: 9142_CR27 publication-title: Science doi: 10.1126/science.abe2629 – ident: 9142_CR29 – volume: 110 start-page: 914 year: 2022 ident: 9142_CR9 publication-title: Neuron doi: 10.1016/j.neuron.2021.12.018 – volume: 107 start-page: 1048 year: 2020 ident: 9142_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2020.09.005 – ident: 9142_CR71 doi: 10.31234/osf.io/aqc9n – ident: 9142_CR5 doi: 10.7551/mitpress/5237.001.0001 – ident: 9142_CR25 doi: 10.1016/j.isci.2022.105856 – volume: 15 start-page: 678158 year: 2021 ident: 9142_CR46 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2021.678158 – ident: 9142_CR65 doi: 10.1007/978-0-387-84858-7 – ident: 9142_CR19 – volume: 557 start-page: 429 year: 2018 ident: 9142_CR20 publication-title: Nature doi: 10.1038/s41586-018-0102-6 – volume: 22 start-page: 2066 year: 2019 ident: 9142_CR38 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0518-9 – ident: 9142_CR50 doi: 10.17605/osf.io/8jwhm – volume: 5 start-page: e11305 year: 2016 ident: 9142_CR56 publication-title: eLife doi: 10.7554/eLife.11305 – ident: 9142_CR57 – volume: 29 start-page: 2864 year: 2016 ident: 9142_CR60 publication-title: Adv. Neural Inf. Process. Syst. – volume: 106 start-page: 1044 year: 2020 ident: 9142_CR10 publication-title: Neuron doi: 10.1016/j.neuron.2020.03.024 – volume: 129 start-page: 1789 year: 2021 ident: 9142_CR33 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01453-z – volume: 33 start-page: 1572 year: 2021 ident: 9142_CR40 publication-title: Neural Comput. doi: 10.1162/neco_a_01381 – volume: 33 start-page: 201 year: 1997 ident: 9142_CR63 publication-title: Stat. Probabil. Lett. doi: 10.1016/S0167-7152(96)00128-9 – volume: 111 start-page: 8619 year: 2014 ident: 9142_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1403112111 – volume: 16 start-page: e1007514 year: 2020 ident: 9142_CR48 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007514 – volume: 6 start-page: 461 year: 1978 ident: 9142_CR64 publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 15 start-page: e1006903 year: 2019 ident: 9142_CR28 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006903 – volume: 109 start-page: 149 year: 2021 ident: 9142_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2020.10.013 – volume: 5 start-page: 1190 year: 2021 ident: 9142_CR53 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-021-01176-8 – volume: 70 start-page: 113 year: 2021 ident: 9142_CR67 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.08.002 – volume: 21 start-page: 860 year: 2018 ident: 9142_CR22 publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0147-8 – volume: 99 start-page: 609 year: 2018 ident: 9142_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – ident: 9142_CR4 doi: 10.1145/1283920.1283930 – volume: 9 start-page: 1735 year: 1997 ident: 9142_CR58 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 30 start-page: 12366 year: 2010 ident: 9142_CR36 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0822-10.2010 – volume: 14 start-page: 867 year: 2013 ident: 9142_CR66 publication-title: J. Mach. Learn. Res. – volume: 441 start-page: 876 year: 2006 ident: 9142_CR55 publication-title: Nature doi: 10.1038/nature04766 – volume: 7 start-page: 986 year: 2023 ident: 9142_CR30 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-022-01510-8 – volume: 19 start-page: 356 year: 2016 ident: 9142_CR18 publication-title: Nat. Neurosci. doi: 10.1038/nn.4244 – volume: 28 start-page: 665 year: 2025 ident: 9142_CR43 publication-title: Nat. Neurosci. doi: 10.1038/s41593-025-01869-7 – ident: 9142_CR69 – volume: 10 start-page: 1214 year: 2007 ident: 9142_CR35 publication-title: Nat. Neurosci. doi: 10.1038/nn1954 – volume: 48 start-page: 1928 year: 2016 ident: 9142_CR72 publication-title: PMLR – volume: 35 start-page: 24072 year: 2022 ident: 9142_CR41 publication-title: Adv Neural Inf. Process. Syst. – volume: 69 start-page: 1204 year: 2011 ident: 9142_CR51 publication-title: Neuron doi: 10.1016/j.neuron.2011.02.027 – ident: 9142_CR54 doi: 10.17605/osf.io/f3t2a – volume: 33 start-page: 269 year: 2010 ident: 9142_CR8 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.051508.135409 – ident: 9142_CR49 doi: 10.17632/p7ft2bvphx.1 – volume: 4 start-page: 1053 year: 2020 ident: 9142_CR14 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-0905-y – volume: 40 start-page: e253 year: 2017 ident: 9142_CR6 publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X16001837 – volume: 19 start-page: 716 year: 1974 ident: 9142_CR62 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 27 start-page: 1340 year: 2024 ident: 9142_CR26 publication-title: Nat. Neurosci. doi: 10.1038/s41593-024-01675-7 – volume: 4 start-page: 359 year: 2022 ident: 9142_CR45 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00464-w – ident: 9142_CR59 – volume: 23 start-page: 408 year: 2019 ident: 9142_CR7 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2019.02.006 – ident: 9142_CR68 doi: 10.1145/1150402.1150464 |
| SSID | ssj0005174 |
| Score | 2.5010808 |
| Snippet | Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 993 |
| SubjectTerms | 631/114/2397 631/378/116/2396 631/477/2811 64/60 64/86 Agents (artificial intelligence) Algorithms Animal behavior Animal cognition Animals Artificial Intelligence Bayes Theorem Bayesian analysis Choice Behavior - physiology Cognition Cognition - physiology Cognitive models Cognitive tasks Datasets Decision making Decision Making - physiology Female Humanities and Social Sciences Humans Learning - physiology Machine learning Male Mathematical models Modelling Models, Neurological multidisciplinary Neural networks Probability Recurrent Neural Networks Reinforcement Reinforcement, Psychology Reward Science Science (multidisciplinary) Variables |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yIKQ9lLzjNi0q5JCQFfFDtuRj2TSEQnLqwt6MrAdZWLzL2kvZf5-RX-l2IaRniZE1M_LMaGY-AVxKaWwkbERTXzDKhOU0N9ynUvsi5Tn6wIlrcH58Sh5G7Nc4Hm_BoOuFWcvf19DdJZoY4QplY4q2jYWUbcOuQMV07xUMk-FrQcc_mMttiwxSud2ksW6GNnzLzRLJPk_6EfaXxVyu_sjp9C9TdH8An1ofkvxohH4IW6Y4gr26llOVR3DYnteSXLWg0tfHcHc3KZUr10TqpK8ZImXVQUUQdyNLqkmxIgt3B-9Qm4hDu8SViqZWvDyB0f3P38MH2r6gQBWGFRVVRjMZ5LkUGIhGPOcmT5VNtdWJS6AFvo6YDozPtFWxLwOtrLShFL7SeWRMEp3CTjErzDkQnZoAo5_AGB4yHeuUq9BymWrhgqJIeXDTMTSbN0AZWZ3gjkTWsD9D9mc1-zPmwUXH86w9NGWGvh26hyxmgQff-2FUd5fDkIWZLd2cMMEQTzDhwVkjon455oCAQo4jYk14_QQHpb0-Ukyea0httN9OWVMPBp2cX7_rrW0Mel14x64__x_1L_AhrFUW_2XiAnaqxdJ8RReoyr_Vmv8CBKn8vg priority: 102 providerName: Springer Nature |
| Title | Discovering cognitive strategies with tiny recurrent neural networks |
| URI | https://link.springer.com/article/10.1038/s41586-025-09142-4 https://www.ncbi.nlm.nih.gov/pubmed/40604278 https://www.proquest.com/docview/3244164541 https://www.proquest.com/docview/3226716848 https://pubmed.ncbi.nlm.nih.gov/PMC12390849 https://www.nature.com/articles/s41586-025-09142-4.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 644 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: AFBBN dateStart: 20190103 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aWiHgAdi4hY0qSDyAmEsSO7bz2HVUExIVD1SMp8jxRVRMWbWkQtuvn-1ctjKE2LOt2MfX7_h85wvAWyG0wdxglEWcIMINQ4VmERIq4hkrLAamLsH5y5weL8jnk_RkC2iXC-NJ-17S0h_THTvsY2UvGu7osimyNxxJEBmvlNmGIU0tBh_AcDH_OvlxU3LZpxUxigjlrM2WiTD_y4c2b6RbMPM2W7IPmT6E--tyJS5-i9PTG7fS7DF87-xpyCi_xuu6GMvLP6Qe727wE3jUAtVw0tTcgS1d7sI9TxiV1S7stIdCFb5rlavfP4Wjo2UlHSfU9jvsiUlhVXd6FKF79g3rZXkRnruHficNFTpJTdtS2RDSq2ewmH36Nj1G7W8akLS-S42kVkTERSG49XYxK5guMmkyZRR1Ubo4UpioWEdEGZlGIlbSCJMIHklVYK0pfg6D8qzULyFUmY6tixVrzRKiUpUxmRgmMsWd54VlAB-6qcpXjRpH7qPomOfNgOV2wHI_YDkJYL-bzbzdmVVuAaTFoCQlcQBv-mK7p1ygRJT6bO3qJNT6kZzwAF40k983R5zaUMJsCd9YFn0Fp9e9WVIuf3rdbgsS3I7IAjjoVtB1v_5lxkG_yv7D6ld3q74HDxK_yOyByfdhUJ-v9WuLs-piBMPJ7PBwPoLtKZ2O2i12BS-0I8s |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RrSrggAptIUBbV-qhVdciDyd2jmgp2rbACSRuluOHuhIKiGSF9t8zzotuV6ro2dY4nhlnZjKfvwB8Vsq6RLiE5qFglAnHaWF5SJUJRc4LzIEzf8H5_CKbXrGf1-n1Goz7uzBL_fuGurvCECM8UDalGNtYTNkLeCmwovNM-ZNs8gTo-Itzubsig1KOVmUsh6GV3HIVIjn0STdhfV7eqcWDurn5IxSdvoatLockx63Rt2HNljvwqsFy6moHtrvzWpEvHan01zdwcjKrtIdronQyYIZIVfdUEcR_kSX1rFyQe_8N3rM2Ec92iSuVLVa8egtXp98vJ1Pa_UGBaiwraqqtYSoqCiWwEE14wW2Ra5cbZzLfQItCkzAT2ZAZp9NQRUY75WIlQm2KxNoseQej8ra0e0BMbiOsfiJrecxManKuY8dVboQvihIdwLdeofKuJcqQTYM7EbJVv0T1y0b9kgVw2OtcdoemkpjbYXrIUhYF8GkYRnf3PQxV2tu5nxNnWOIJJgLYbU00LMc8EVDMcUQsGW-Y4Km0l0fK2e-GUhvjt3fWPIBxb-en5_rXNsaDLzxj1_v_J_0jrE8vz8_k2Y-LXwewETfui-81cQij-n5u32M6VBcfmlPwCA9Y_60 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIigcEC0UAgWMxAFEDUnsxM4RdVmVV8WBSr1Zjh9ipSpdNVmh_nvGzqMsRQjOtvwYjz0zns-fAV5o7TyTntEqlZxy6QWtnUiptqmsRI0-cBkeOH85Kg-P-ceT4mQDyvEtTATtR0rLeEyP6LC3LRoaGeCyBUULx3PK3yytvwbXpWBlTNKWB5fQjt_Yl4fHMimTf2hn3SBd8TKvgiWnjOlt2Fo1S33xQ5-e_mKU5nfhzuBNknf9-LdhwzU7cCOiOk27A9vDzm3Jy4Fe-tU9mM0WrQnATWydTOgh0nYjaQQJd7OkWzQX5Dzcxgf-JhJ4L7GnpkeNt_fheP7-28EhHf5SoAYDjI4aZ7nO6lpLDEmZqIWrK-Mr620ZUmlZahm3mUu59aZIdWaN1z7XMjW2Zs6VbBc2m7PGPQRiK5dhHJQ5J3JuC1sJk3uhKytDeMRMAq9HgaplT5mhYqqbSdWLX6H4VRS_4gnsjTJXw_ZpFXp56CjygmcJPJ-KUfFDNkM37mwV6uQlBnuSywQe9Es0dccDJVAusESuLd5UIZBqr5c0i--RXBsteVDbKoH9cZ0vx_W3aexPuvAPs370f60_g5tfZ3P1-cPRp8dwK4_aiwec3IPN7nzlnqBf1NVP4yb4CX1rBT8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwAFoKDS3ISBxA1EsSO7ZzrChVhUTFgRXlFPkpVlTpqsmqKr8e23nQbRGiZ1uxx89vPN98AXgtpXVEOILLVFBMheNYWZ5iaVJRcuUxMAsJzp-P2dGMfjopTtaADbkwkbQfJS3jMT2ww943_qIRgS5bYH_D0RzT6cK4O7DOCo_BJ7A-O_6y__2q5HJMK-IMUyZ4ny2TEvGXD63eSDdg5k225BgyfQD3lvVCXl7I09Mrt9LhI_g22NORUX5Ol62a6l_XpB5vb_BjeNgDVbTf1dyANVtvwt1IGNXNJmz0h0KD3vTK1W-fwMHBvNGBE-r7jUZiEmraQY8ChWdf1M7rS3QeHvqDNBQKkpq-pbojpDdbMDv8-PXDEe5_04C1911arK2hMlNKCu_tEq64VaV2pXGGhShdlhpCTWZTapwuUpkZ7aTLpUi1UcRaRp7CpD6r7TYgU9rMu1iZtTynpjAl17njsjQieF5EJ_BumKpq0alxVDGKTkTVDVjlB6yKA1bRBHaH2az6ndlUHkB6DEoLmiXwaiz2eyoESmRtz5ahTs68HymoSOBZN_ljczSoDeXcl4iVZTFWCHrdqyX1_EfU7fYgIeyIMoG9YQX96de_zNgbV9l_WP38dtV34H4eF5k_MMUuTNrzpX3hcVarXvab6jdQDyFy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+cognitive+strategies+with+tiny+recurrent+neural+networks&rft.jtitle=Nature+%28London%29&rft.au=Ji-An%2C+Li&rft.au=Benna%2C+Marcus+K&rft.au=Mattar%2C+Marcelo+G&rft.date=2025-08-28&rft.issn=1476-4687&rft.eissn=1476-4687&rft_id=info:doi/10.1038%2Fs41586-025-09142-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |