Discovering cognitive strategies with tiny recurrent neural networks

Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behavi...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 644; no. 8078; pp. 993 - 1001
Main Authors Ji-An, Li, Benna, Marcus K., Mattar, Marcelo G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.08.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-025-09142-4

Cover

Abstract Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour 3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms.
AbstractList Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference and reinforcement learning provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.
Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms.
Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference1 and reinforcement learning2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.
Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour 3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition. Modelling biological decision-making with tiny recurrent neural networks enables more accurate predictions of animal choices than classical cognitive models and offers insights into the underlying cognitive strategies and neural mechanisms.
Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference 1 and reinforcement learning 2 provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour 3 and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.
Author Ji-An, Li
Benna, Marcus K.
Mattar, Marcelo G.
Author_xml – sequence: 1
  givenname: Li
  surname: Ji-An
  fullname: Ji-An, Li
  organization: Department of Neurobiology, School of Biological Sciences, University of California San Diego
– sequence: 2
  givenname: Marcus K.
  orcidid: 0000-0001-8100-2857
  surname: Benna
  fullname: Benna, Marcus K.
  organization: Department of Neurobiology, School of Biological Sciences, University of California San Diego
– sequence: 3
  givenname: Marcelo G.
  orcidid: 0000-0003-3303-2490
  surname: Mattar
  fullname: Mattar, Marcelo G.
  email: marcelo.mattar@nyu.edu
  organization: Department of Psychology, New York University, Center for Neural Science, New York University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40604278$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFL8ABReLCJeA_E8c5IdTSUqkSl_ZsOfZk65K1FzvZ1X57XHYplAPiNAe_9_zmNyfkKMSAhLxm9D2jQn3IwBola8qbmnYMeA3PyIJBK2uQqj0iC0q5qqkS8pic5HxPKW1YCy_IMVBJgbdqQc7PfbZxg8mHZWXjMvjJb7DKUzITLj3mauunu2ryYVcltHNKGKYq4JzMWMa0jelbfkmeD2bM-OowT8ntxeebsy_19dfLq7NP17UFrqbaogPD-t4ooYRo-xb7zg6dG5zkinWMOgGOIQU32IYa5uxgBm4Uta4XiFKcErHPncPa7LZmHPU6-ZVJO82ofmCi90x0YaJ_MtFQXB_3rvXcr9DZskAp_-iMxuunL8Hf6WXcaMZFRxV0JeHdISHF7zPmSa8KNRxHEzDOWQvOZcukAlWkb_-S3sc5hUKlqACYhAZYUb35s9Jjl193KQK-F9gUc044_N-iBzx5_XBOTL___ofrB7IhsdQ
Cites_doi 10.5281/zenodo.4041459
10.7554/eLife.64575
10.1371/journal.pcbi.1004648
10.7554/eLife.49547
10.1016/j.cell.2020.10.024
10.6084/m9.figshare.20449140.v2
10.1038/s41467-024-50503-w
10.1126/science.1192788
10.1016/j.jmp.2008.12.005
10.3115/v1/W14-4012
10.1038/s41593-018-0310-2
10.1016/j.neuron.2005.04.026
10.1073/pnas.2021860119
10.1038/s41593-019-0520-2
10.1073/pnas.2205791119
10.1038/s41593-022-01088-4
10.1038/s43588-022-00281-6
10.1111/j.1460-9568.2011.07980.x
10.1126/science.abe2629
10.1016/j.neuron.2021.12.018
10.1016/j.neuron.2020.09.005
10.31234/osf.io/aqc9n
10.7551/mitpress/5237.001.0001
10.1016/j.isci.2022.105856
10.3389/fncom.2021.678158
10.1007/978-0-387-84858-7
10.1038/s41586-018-0102-6
10.1038/s41593-019-0518-9
10.17605/osf.io/8jwhm
10.7554/eLife.11305
10.1016/j.neuron.2020.03.024
10.1007/s11263-021-01453-z
10.1162/neco_a_01381
10.1016/S0167-7152(96)00128-9
10.1073/pnas.1403112111
10.1371/journal.pcbi.1007514
10.1214/aos/1176344136
10.1371/journal.pcbi.1006903
10.1016/j.neuron.2020.10.013
10.1038/s41562-021-01176-8
10.1016/j.conb.2021.08.002
10.1038/s41593-018-0147-8
10.1016/j.neuron.2018.07.003
10.1145/1283920.1283930
10.1162/neco.1997.9.8.1735
10.1523/JNEUROSCI.0822-10.2010
10.1038/nature04766
10.1038/s41562-022-01510-8
10.1038/nn.4244
10.1038/s41593-025-01869-7
10.1038/nn1954
10.1016/j.neuron.2011.02.027
10.17605/osf.io/f3t2a
10.1146/annurev.neuro.051508.135409
10.17632/p7ft2bvphx.1
10.1038/s41562-020-0905-y
10.1017/S0140525X16001837
10.1109/TAC.1974.1100705
10.1038/s41593-024-01675-7
10.1038/s42256-022-00464-w
10.1016/j.tics.2019.02.006
10.1145/1150402.1150464
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41586-025-09142-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 1001
ExternalDocumentID 10.1038/s41586-025-09142-4
PMC12390849
40604278
10_1038_s41586_025_09142_4
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AARCD
AASDW
AAYEP
AAYZH
ABDQB
ABFSG
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACSTC
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEZWR
AFANA
AFBBN
AFFNX
AFHIU
AFKWF
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGSOS
AGSTI
AHMBA
AHSBF
AHWEU
AIDUJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NAPCQ
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TUS
TWZ
U5U
UKR
UMD
UQL
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~88
~KM
AAYXX
ABUFD
CITATION
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
53G
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESTFP
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
5PM
ABAWZ
ADTOC
UNPAY
ID FETCH-LOGICAL-c428t-ced4a1bba838337b7eb9cf9dfd6281910d34d1e04dfc50a1dcfaf2a80cdb3ee63
IEDL.DBID UNPAY
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 19 23:37:24 EDT 2025
Tue Sep 30 17:00:38 EDT 2025
Fri Sep 05 15:44:50 EDT 2025
Tue Oct 07 06:15:01 EDT 2025
Wed Oct 08 04:12:08 EDT 2025
Thu Oct 09 00:20:34 EDT 2025
Sat Oct 04 02:32:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8078
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-ced4a1bba838337b7eb9cf9dfd6281910d34d1e04dfc50a1dcfaf2a80cdb3ee63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8100-2857
0000-0003-3303-2490
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41586-025-09142-4.pdf
PMID 40604278
PQID 3244164541
PQPubID 40569
PageCount 9
ParticipantIDs unpaywall_primary_10_1038_s41586_025_09142_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12390849
proquest_miscellaneous_3226716848
proquest_journals_3244164541
pubmed_primary_40604278
crossref_primary_10_1038_s41586_025_09142_4
springer_journals_10_1038_s41586_025_09142_4
PublicationCentury 2000
PublicationDate 2025-08-28
PublicationDateYYYYMMDD 2025-08-28
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References K Miller (9142_CR47) 2023; 36
Y Wu (9142_CR60) 2016; 29
ND Daw (9142_CR51) 2011; 69
JB Tenenbaum (9142_CR1) 2011; 331
P Suthaharan (9142_CR53) 2021; 5
RC Wilson (9142_CR13) 2019; 8
M Jazayeri (9142_CR67) 2021; 70
M Botvinick (9142_CR7) 2019; 23
JY Angela (9142_CR37) 2005; 46
R Bartolo (9142_CR48) 2020; 16
9142_CR54
R Bartolo (9142_CR10) 2020; 106
BA Richards (9142_CR15) 2019; 22
V Mnih (9142_CR72) 2016; 48
9142_CR52
9142_CR50
PR Vlachas (9142_CR45) 2022; 4
CF da Silva (9142_CR14) 2020; 4
B Chen (9142_CR44) 2022; 2
S Ganguli (9142_CR32) 2022; 119
ID Jordan (9142_CR46) 2021; 15
9142_CR59
9142_CR57
9142_CR5
9142_CR4
Y Niv (9142_CR2) 2009; 53
CM Gillan (9142_CR56) 2016; 5
T Akam (9142_CR11) 2021; 109
9142_CR19
M Beiran (9142_CR40) 2021; 33
AGE Collins (9142_CR61) 2012; 35
9142_CR65
G Schwarz (9142_CR64) 1978; 6
9142_CR29
A Dubreuil (9142_CR42) 2022; 25
GR Yang (9142_CR24) 2019; 22
DLK Yamins (9142_CR17) 2014; 111
9142_CR25
9142_CR69
9142_CR68
KJ Miller (9142_CR12) 2022; 11
JE Cavanaugh (9142_CR63) 1997; 33
JC Peterson (9142_CR27) 2021; 372
C Langdon (9142_CR43) 2025; 28
W Bialek (9142_CR3) 2022; 119
A Dezfouli (9142_CR28) 2019; 15
TEJ Behrens (9142_CR35) 2007; 10
P Cisek (9142_CR8) 2010; 33
J Gou (9142_CR33) 2021; 129
KT Jensen (9142_CR26) 2024; 27
A Banino (9142_CR20) 2018; 557
9142_CR31
MR Nassar (9142_CR36) 2010; 30
9142_CR71
9142_CR70
H Akaike (9142_CR62) 1974; 19
DLK Yamins (9142_CR18) 2016; 19
S Hochreiter (9142_CR58) 1997; 9
PI Jaffe (9142_CR30) 2023; 7
T Akam (9142_CR34) 2015; 11
MG Mattar (9142_CR9) 2022; 110
GR Yang (9142_CR16) 2020; 107
JCR Whittington (9142_CR21) 2020; 183
ND Daw (9142_CR55) 2006; 441
C Findling (9142_CR38) 2019; 22
S Watanabe (9142_CR66) 2013; 14
V Fascianelli (9142_CR23) 2024; 15
F Mastrogiuseppe (9142_CR39) 2018; 99
A Valente (9142_CR41) 2022; 35
BM Lake (9142_CR6) 2017; 40
JX Wang (9142_CR22) 2018; 21
9142_CR49
References_xml – volume: 36
  start-page: 61377
  year: 2023
  ident: 9142_CR47
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 9142_CR70
  doi: 10.5281/zenodo.4041459
– volume: 11
  start-page: e64575
  year: 2022
  ident: 9142_CR12
  publication-title: eLife
  doi: 10.7554/eLife.64575
– volume: 11
  start-page: e1004648
  year: 2015
  ident: 9142_CR34
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004648
– volume: 8
  start-page: e49547
  year: 2019
  ident: 9142_CR13
  publication-title: eLife
  doi: 10.7554/eLife.49547
– volume: 183
  start-page: 1249
  year: 2020
  ident: 9142_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.024
– ident: 9142_CR52
  doi: 10.6084/m9.figshare.20449140.v2
– volume: 15
  start-page: 6479
  year: 2024
  ident: 9142_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50503-w
– volume: 331
  start-page: 1279
  year: 2011
  ident: 9142_CR1
  publication-title: Science
  doi: 10.1126/science.1192788
– volume: 53
  start-page: 139
  year: 2009
  ident: 9142_CR2
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2008.12.005
– ident: 9142_CR31
  doi: 10.3115/v1/W14-4012
– volume: 22
  start-page: 297
  year: 2019
  ident: 9142_CR24
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0310-2
– volume: 46
  start-page: 681
  year: 2005
  ident: 9142_CR37
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.04.026
– volume: 119
  start-page: e2021860119
  year: 2022
  ident: 9142_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2021860119
– volume: 22
  start-page: 1761
  year: 2019
  ident: 9142_CR15
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0520-2
– volume: 119
  start-page: e2205791119
  year: 2022
  ident: 9142_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2205791119
– volume: 25
  start-page: 783
  year: 2022
  ident: 9142_CR42
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01088-4
– volume: 2
  start-page: 433
  year: 2022
  ident: 9142_CR44
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00281-6
– volume: 35
  start-page: 1024
  year: 2012
  ident: 9142_CR61
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2011.07980.x
– volume: 372
  start-page: 1209
  year: 2021
  ident: 9142_CR27
  publication-title: Science
  doi: 10.1126/science.abe2629
– ident: 9142_CR29
– volume: 110
  start-page: 914
  year: 2022
  ident: 9142_CR9
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.12.018
– volume: 107
  start-page: 1048
  year: 2020
  ident: 9142_CR16
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.09.005
– ident: 9142_CR71
  doi: 10.31234/osf.io/aqc9n
– ident: 9142_CR5
  doi: 10.7551/mitpress/5237.001.0001
– ident: 9142_CR25
  doi: 10.1016/j.isci.2022.105856
– volume: 15
  start-page: 678158
  year: 2021
  ident: 9142_CR46
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2021.678158
– ident: 9142_CR65
  doi: 10.1007/978-0-387-84858-7
– ident: 9142_CR19
– volume: 557
  start-page: 429
  year: 2018
  ident: 9142_CR20
  publication-title: Nature
  doi: 10.1038/s41586-018-0102-6
– volume: 22
  start-page: 2066
  year: 2019
  ident: 9142_CR38
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0518-9
– ident: 9142_CR50
  doi: 10.17605/osf.io/8jwhm
– volume: 5
  start-page: e11305
  year: 2016
  ident: 9142_CR56
  publication-title: eLife
  doi: 10.7554/eLife.11305
– ident: 9142_CR57
– volume: 29
  start-page: 2864
  year: 2016
  ident: 9142_CR60
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 106
  start-page: 1044
  year: 2020
  ident: 9142_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.03.024
– volume: 129
  start-page: 1789
  year: 2021
  ident: 9142_CR33
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01453-z
– volume: 33
  start-page: 1572
  year: 2021
  ident: 9142_CR40
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01381
– volume: 33
  start-page: 201
  year: 1997
  ident: 9142_CR63
  publication-title: Stat. Probabil. Lett.
  doi: 10.1016/S0167-7152(96)00128-9
– volume: 111
  start-page: 8619
  year: 2014
  ident: 9142_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1403112111
– volume: 16
  start-page: e1007514
  year: 2020
  ident: 9142_CR48
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007514
– volume: 6
  start-page: 461
  year: 1978
  ident: 9142_CR64
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 15
  start-page: e1006903
  year: 2019
  ident: 9142_CR28
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006903
– volume: 109
  start-page: 149
  year: 2021
  ident: 9142_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.10.013
– volume: 5
  start-page: 1190
  year: 2021
  ident: 9142_CR53
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-021-01176-8
– volume: 70
  start-page: 113
  year: 2021
  ident: 9142_CR67
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.08.002
– volume: 21
  start-page: 860
  year: 2018
  ident: 9142_CR22
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0147-8
– volume: 99
  start-page: 609
  year: 2018
  ident: 9142_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– ident: 9142_CR4
  doi: 10.1145/1283920.1283930
– volume: 9
  start-page: 1735
  year: 1997
  ident: 9142_CR58
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 30
  start-page: 12366
  year: 2010
  ident: 9142_CR36
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0822-10.2010
– volume: 14
  start-page: 867
  year: 2013
  ident: 9142_CR66
  publication-title: J. Mach. Learn. Res.
– volume: 441
  start-page: 876
  year: 2006
  ident: 9142_CR55
  publication-title: Nature
  doi: 10.1038/nature04766
– volume: 7
  start-page: 986
  year: 2023
  ident: 9142_CR30
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-022-01510-8
– volume: 19
  start-page: 356
  year: 2016
  ident: 9142_CR18
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4244
– volume: 28
  start-page: 665
  year: 2025
  ident: 9142_CR43
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-025-01869-7
– ident: 9142_CR69
– volume: 10
  start-page: 1214
  year: 2007
  ident: 9142_CR35
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1954
– volume: 48
  start-page: 1928
  year: 2016
  ident: 9142_CR72
  publication-title: PMLR
– volume: 35
  start-page: 24072
  year: 2022
  ident: 9142_CR41
  publication-title: Adv Neural Inf. Process. Syst.
– volume: 69
  start-page: 1204
  year: 2011
  ident: 9142_CR51
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.027
– ident: 9142_CR54
  doi: 10.17605/osf.io/f3t2a
– volume: 33
  start-page: 269
  year: 2010
  ident: 9142_CR8
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.051508.135409
– ident: 9142_CR49
  doi: 10.17632/p7ft2bvphx.1
– volume: 4
  start-page: 1053
  year: 2020
  ident: 9142_CR14
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-0905-y
– volume: 40
  start-page: e253
  year: 2017
  ident: 9142_CR6
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X16001837
– volume: 19
  start-page: 716
  year: 1974
  ident: 9142_CR62
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 27
  start-page: 1340
  year: 2024
  ident: 9142_CR26
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-024-01675-7
– volume: 4
  start-page: 359
  year: 2022
  ident: 9142_CR45
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00464-w
– ident: 9142_CR59
– volume: 23
  start-page: 408
  year: 2019
  ident: 9142_CR7
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2019.02.006
– ident: 9142_CR68
  doi: 10.1145/1150402.1150464
SSID ssj0005174
Score 2.5010808
Snippet Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 993
SubjectTerms 631/114/2397
631/378/116/2396
631/477/2811
64/60
64/86
Agents (artificial intelligence)
Algorithms
Animal behavior
Animal cognition
Animals
Artificial Intelligence
Bayes Theorem
Bayesian analysis
Choice Behavior - physiology
Cognition
Cognition - physiology
Cognitive models
Cognitive tasks
Datasets
Decision making
Decision Making - physiology
Female
Humanities and Social Sciences
Humans
Learning - physiology
Machine learning
Male
Mathematical models
Modelling
Models, Neurological
multidisciplinary
Neural networks
Probability
Recurrent Neural Networks
Reinforcement
Reinforcement, Psychology
Reward
Science
Science (multidisciplinary)
Variables
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yIKQ9lLzjNi0q5JCQFfFDtuRj2TSEQnLqwt6MrAdZWLzL2kvZf5-RX-l2IaRniZE1M_LMaGY-AVxKaWwkbERTXzDKhOU0N9ynUvsi5Tn6wIlrcH58Sh5G7Nc4Hm_BoOuFWcvf19DdJZoY4QplY4q2jYWUbcOuQMV07xUMk-FrQcc_mMttiwxSud2ksW6GNnzLzRLJPk_6EfaXxVyu_sjp9C9TdH8An1ofkvxohH4IW6Y4gr26llOVR3DYnteSXLWg0tfHcHc3KZUr10TqpK8ZImXVQUUQdyNLqkmxIgt3B-9Qm4hDu8SViqZWvDyB0f3P38MH2r6gQBWGFRVVRjMZ5LkUGIhGPOcmT5VNtdWJS6AFvo6YDozPtFWxLwOtrLShFL7SeWRMEp3CTjErzDkQnZoAo5_AGB4yHeuUq9BymWrhgqJIeXDTMTSbN0AZWZ3gjkTWsD9D9mc1-zPmwUXH86w9NGWGvh26hyxmgQff-2FUd5fDkIWZLd2cMMEQTzDhwVkjon455oCAQo4jYk14_QQHpb0-Ukyea0httN9OWVMPBp2cX7_rrW0Mel14x64__x_1L_AhrFUW_2XiAnaqxdJ8RReoyr_Vmv8CBKn8vg
  priority: 102
  providerName: Springer Nature
Title Discovering cognitive strategies with tiny recurrent neural networks
URI https://link.springer.com/article/10.1038/s41586-025-09142-4
https://www.ncbi.nlm.nih.gov/pubmed/40604278
https://www.proquest.com/docview/3244164541
https://www.proquest.com/docview/3226716848
https://pubmed.ncbi.nlm.nih.gov/PMC12390849
https://www.nature.com/articles/s41586-025-09142-4.pdf
UnpaywallVersion publishedVersion
Volume 644
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: AFBBN
  dateStart: 20190103
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD7aWiHgAdi4hY0qSDyAmEsSO7bz2HVUExIVD1SMp8jxRVRMWbWkQtuvn-1ctjKE2LOt2MfX7_h85wvAWyG0wdxglEWcIMINQ4VmERIq4hkrLAamLsH5y5weL8jnk_RkC2iXC-NJ-17S0h_THTvsY2UvGu7osimyNxxJEBmvlNmGIU0tBh_AcDH_OvlxU3LZpxUxigjlrM2WiTD_y4c2b6RbMPM2W7IPmT6E--tyJS5-i9PTG7fS7DF87-xpyCi_xuu6GMvLP6Qe727wE3jUAtVw0tTcgS1d7sI9TxiV1S7stIdCFb5rlavfP4Wjo2UlHSfU9jvsiUlhVXd6FKF79g3rZXkRnruHficNFTpJTdtS2RDSq2ewmH36Nj1G7W8akLS-S42kVkTERSG49XYxK5guMmkyZRR1Ubo4UpioWEdEGZlGIlbSCJMIHklVYK0pfg6D8qzULyFUmY6tixVrzRKiUpUxmRgmMsWd54VlAB-6qcpXjRpH7qPomOfNgOV2wHI_YDkJYL-bzbzdmVVuAaTFoCQlcQBv-mK7p1ygRJT6bO3qJNT6kZzwAF40k983R5zaUMJsCd9YFn0Fp9e9WVIuf3rdbgsS3I7IAjjoVtB1v_5lxkG_yv7D6ld3q74HDxK_yOyByfdhUJ-v9WuLs-piBMPJ7PBwPoLtKZ2O2i12BS-0I8s
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7RrSrggAptIUBbV-qhVdciDyd2jmgp2rbACSRuluOHuhIKiGSF9t8zzotuV6ro2dY4nhlnZjKfvwB8Vsq6RLiE5qFglAnHaWF5SJUJRc4LzIEzf8H5_CKbXrGf1-n1Goz7uzBL_fuGurvCECM8UDalGNtYTNkLeCmwovNM-ZNs8gTo-Itzubsig1KOVmUsh6GV3HIVIjn0STdhfV7eqcWDurn5IxSdvoatLockx63Rt2HNljvwqsFy6moHtrvzWpEvHan01zdwcjKrtIdronQyYIZIVfdUEcR_kSX1rFyQe_8N3rM2Ec92iSuVLVa8egtXp98vJ1Pa_UGBaiwraqqtYSoqCiWwEE14wW2Ra5cbZzLfQItCkzAT2ZAZp9NQRUY75WIlQm2KxNoseQej8ra0e0BMbiOsfiJrecxManKuY8dVboQvihIdwLdeofKuJcqQTYM7EbJVv0T1y0b9kgVw2OtcdoemkpjbYXrIUhYF8GkYRnf3PQxV2tu5nxNnWOIJJgLYbU00LMc8EVDMcUQsGW-Y4Km0l0fK2e-GUhvjt3fWPIBxb-en5_rXNsaDLzxj1_v_J_0jrE8vz8_k2Y-LXwewETfui-81cQij-n5u32M6VBcfmlPwCA9Y_60
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIigcEC0UAgWMxAFEDUnsxM4RdVmVV8WBSr1Zjh9ipSpdNVmh_nvGzqMsRQjOtvwYjz0zns-fAV5o7TyTntEqlZxy6QWtnUiptqmsRI0-cBkeOH85Kg-P-ceT4mQDyvEtTATtR0rLeEyP6LC3LRoaGeCyBUULx3PK3yytvwbXpWBlTNKWB5fQjt_Yl4fHMimTf2hn3SBd8TKvgiWnjOlt2Fo1S33xQ5-e_mKU5nfhzuBNknf9-LdhwzU7cCOiOk27A9vDzm3Jy4Fe-tU9mM0WrQnATWydTOgh0nYjaQQJd7OkWzQX5Dzcxgf-JhJ4L7GnpkeNt_fheP7-28EhHf5SoAYDjI4aZ7nO6lpLDEmZqIWrK-Mr620ZUmlZahm3mUu59aZIdWaN1z7XMjW2Zs6VbBc2m7PGPQRiK5dhHJQ5J3JuC1sJk3uhKytDeMRMAq9HgaplT5mhYqqbSdWLX6H4VRS_4gnsjTJXw_ZpFXp56CjygmcJPJ-KUfFDNkM37mwV6uQlBnuSywQe9Es0dccDJVAusESuLd5UIZBqr5c0i--RXBsteVDbKoH9cZ0vx_W3aexPuvAPs370f60_g5tfZ3P1-cPRp8dwK4_aiwec3IPN7nzlnqBf1NVP4yb4CX1rBT8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBwAFoKDS3ISBxA1EsSO7ZzrChVhUTFgRXlFPkpVlTpqsmqKr8e23nQbRGiZ1uxx89vPN98AXgtpXVEOILLVFBMheNYWZ5iaVJRcuUxMAsJzp-P2dGMfjopTtaADbkwkbQfJS3jMT2ww943_qIRgS5bYH_D0RzT6cK4O7DOCo_BJ7A-O_6y__2q5HJMK-IMUyZ4ny2TEvGXD63eSDdg5k225BgyfQD3lvVCXl7I09Mrt9LhI_g22NORUX5Ol62a6l_XpB5vb_BjeNgDVbTf1dyANVtvwt1IGNXNJmz0h0KD3vTK1W-fwMHBvNGBE-r7jUZiEmraQY8ChWdf1M7rS3QeHvqDNBQKkpq-pbojpDdbMDv8-PXDEe5_04C1911arK2hMlNKCu_tEq64VaV2pXGGhShdlhpCTWZTapwuUpkZ7aTLpUi1UcRaRp7CpD6r7TYgU9rMu1iZtTynpjAl17njsjQieF5EJ_BumKpq0alxVDGKTkTVDVjlB6yKA1bRBHaH2az6ndlUHkB6DEoLmiXwaiz2eyoESmRtz5ahTs68HymoSOBZN_ljczSoDeXcl4iVZTFWCHrdqyX1_EfU7fYgIeyIMoG9YQX96de_zNgbV9l_WP38dtV34H4eF5k_MMUuTNrzpX3hcVarXvab6jdQDyFy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovering+cognitive+strategies+with+tiny+recurrent+neural+networks&rft.jtitle=Nature+%28London%29&rft.au=Ji-An%2C+Li&rft.au=Benna%2C+Marcus+K&rft.au=Mattar%2C+Marcelo+G&rft.date=2025-08-28&rft.issn=1476-4687&rft.eissn=1476-4687&rft_id=info:doi/10.1038%2Fs41586-025-09142-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon