Identifying and manipulating single atoms with scanning transmission electron microscopy
The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including therm...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 58; no. 88; pp. 12274 - 12285 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
03.11.2022
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 1359-7345 1364-548X 1364-548X |
DOI | 10.1039/d2cc04807h |
Cover
Abstract | The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future.
A focused electron beam can be used to manipulate covalently bound impurities within crystal lattices with atomic precision. |
---|---|
AbstractList | The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future.The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future. The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future. The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future. A focused electron beam can be used to manipulate covalently bound impurities within crystal lattices with atomic precision. |
Author | Susi, Toma |
AuthorAffiliation | Faculty of Physics University of Vienna |
AuthorAffiliation_xml | – name: University of Vienna – name: Faculty of Physics |
Author_xml | – sequence: 1 givenname: Toma surname: Susi fullname: Susi, Toma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36260089$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1rFTEUhoO02A_duFcG3IgwNd_JbApyq7ZQcKPQXUgymd6UmeSaZJT775vxttWWZpEckue8vOecHIG9EIMD4A2CJwiS7lOPrYVUQrF-AQ4R4bRlVF7tLTHrWkEoOwBHOd_AuhCTL8EB4ZhDKLtDcHXRu1D8sPXhutGhbyYd_GYedVkuct1G1-gSp9z88WXdZKtDWJ5K0iFPPmcfQ-NGZ0uqweRtitnGzfYV2B_0mN3ru_MY_Pz65cfqvL38_u1i9fmytRTL0hpDTMcsE3QwVggGB6GhQYRqjSh2sHNIEu2koRhJTLnglvQGWeakZIYP5Bic7nQ3s5lcb2s1SY9qk_yk01ZF7dXjl-DX6jr-Vh0nmEJRBT7cCaT4a3a5qFqVdeOog4tzVlhgTiHvGK3o-yfoTZxTqOVViiBaHZNF8N3_jh6s3De9AnAHLL3KyQ3K-lIbHheDflQIqmWu6gyvVn_nel5TPj5JuVd9Fn67g1O2D9y_T0JuAcNRrlI |
CitedBy_id | crossref_primary_10_1093_jmicro_dfae007 crossref_primary_10_1093_micmic_ozad067_704 crossref_primary_10_1002_adma_202403989 |
Cites_doi | 10.1038/s42254-019-0108-5 10.1021/acs.jpcc.1c03549 10.1016/j.ultramic.2012.04.003 10.1063/1.3701598 10.1002/anie.201608377 10.1021/acs.chemmater.6b00590 10.1016/j.carbon.2020.11.015 10.5479/sil.324338.39088000885681 10.1002/smll.200700929 10.1002/anie.202006562 10.1038/nnano.2012.21 10.1021/acs.nanolett.0c00670 10.1126/science.280.5370.1732 10.1038/s41563-020-00833-z 10.1038/119890a0 10.1103/PhysRevLett.92.095502 10.1063/1.5096584 10.1557/mrs.2019.211 10.1111/j.1365-2818.1989.tb02920.x 10.1038/33823 10.1038/366727a0 10.1002/adfm.201901327 10.1063/PT.3.2503 10.1126/sciadv.1500462 10.1103/PhysRevLett.102.096101 10.1038/nmat1297 10.1021/acsnano.8b02001 10.1038/nnano.2016.131 10.1002/smll.201402081 10.1063/1.5063449 10.1126/science.271.5246.181 10.1038/s41598-017-04683-9 10.1021/acsnano.1c03535 10.1021/acsnano.8b01191 10.1038/416826a 10.1021/nl304495v 10.1021/nn5054798 10.1002/anie.201002332 10.1088/2053-1583/aa878f 10.1063/1.1660042 10.1103/PhysRevB.81.100101 10.1038/092399c0 10.1126/science.168.3937.1338 10.1007/s12274-021-3655-x 10.1103/PhysRevB.80.085428 10.1080/14786440508637080 10.1088/1367-2630/ab5cc4 10.1103/PhysRevLett.56.930 10.1557/mrs.2017.187 10.1103/PhysRevLett.122.106101 10.1002/pssr.201700124 10.1021/acs.jpcc.9b01894 10.1021/nl2034688 10.1017/S1431927622011023 10.1021/acs.nanolett.8b02406 10.1017/CBO9780511521416 10.1021/nl402812y 10.1021/acsnano.5b03476 10.1038/ncomms13040 10.1021/acsanm.1c04309 10.1126/science.aba1136 10.1002/pssb.201700188 10.1021/nl2031629 10.1021/acs.jpcc.6b06554 10.1103/PhysRevLett.115.206803 10.1016/j.carbon.2022.05.039 10.1103/PhysRevB.83.245420 10.1073/pnas.14.4.317 10.1016/S0039-6028(98)00140-X 10.1126/science.262.5131.218 10.1103/PhysRevLett.99.086102 10.1038/nphoton.2012.148 10.1103/PhysRevB.105.235419 10.1039/C7QM00548B 10.1016/j.ultramic.2017.03.005 10.1080/14786449708621070 10.1002/anie.201507381 10.1038/366143a0 10.1038/s42254-019-0058-y 10.1038/nmat2941 10.1038/344524a0 10.1063/1.4998599 10.1016/S0079-6816(01)00026-0 10.1126/science.267.5194.68 10.1002/andp.19053220806 10.1038/nnano.2011.252 10.1103/PhysRevB.82.165443 10.1126/sciadv.aay4312 10.1038/ncomms5403 10.1021/nl801386m 10.1017/S1431927612014274 10.1002/adfm.202105132 10.1038/nmat1077 10.1126/science.11.277.608 10.1021/nn1002425 10.1088/2053-1583/ac6c30 10.1002/anie.201403382 10.1103/PhysRev.102.624 10.1103/PhysRevLett.110.185507 10.1021/nl304187e 10.1021/nl301952e 10.1002/smll.201801771 10.1103/PhysRevLett.49.57 10.1038/nature07094 10.1021/acs.nanolett.0c03587 10.1038/nmat2532 10.1038/nnano.2009.347 10.1063/1.3127503 10.1021/acsami.0c07564 10.1088/1361-6528/aabb79 10.1063/1.1683116 10.1038/nature05530 10.1126/science.1176210 10.1021/acsnano.7b07504 10.1126/science.274.5286.413 10.1021/nn300452y 10.1016/j.carbon.2020.01.042 10.1038/nmat2957 10.1126/science.254.5036.1319 10.1088/2053-1583/ac4e9c 10.1021/nl500682j 10.1126/sciadv.aav2252 10.1038/s41578-019-0118-z 10.1038/s43586-021-00047-w 10.1088/0034-4885/72/1/016502 10.1038/nature06352 10.1126/science.290.5500.2280 10.1021/nn3021212 10.1088/2053-1583/aa5e78 10.1021/acsnano.2c07451 10.1063/1.1991989 10.1038/nature08879 10.1038/ncomms8943 10.1126/science.1208759 10.1002/andp.18962930107 10.1086/350077 10.1039/D2NR01018F 10.1103/PhysRevLett.113.115501 10.3897/rio.1.e7479 10.1017/S1431927619001569 10.1021/nl015549q |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1039/d2cc04807h |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 12285 |
ExternalDocumentID | PMC9632407 36260089 10_1039_D2CC04807H d2cc04807h |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 28322 – fundername: ; grantid: 756277-ATMEN – fundername: ; grantid: P 28322-N36 |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 1TJ 29B 4.4 5GY 6J9 705 70J 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG CS3 DU5 EBS ECGLT EE0 EF- F5P GNO H13 HZ~ H~N IDZ IH2 J3I N9A O9- P2P R7B R7C R7D RCNCU RPMJG RRA RRC RSCEA SJN SKA SKF SKH SLH TN5 TWZ UPT VH6 VQA WH7 X7L 53G AAHBH AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACBEA AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP M4U R56 RAOCF CGR CUY CVF ECM EIF NPM 2WC 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c428t-bb3b95c574fbc7750f7a0b134aa142e09e183ae8b421824676c3db1c5e885b6f3 |
ISSN | 1359-7345 1364-548X |
IngestDate | Thu Aug 21 18:39:14 EDT 2025 Fri Jul 11 15:21:14 EDT 2025 Mon Jun 30 13:10:57 EDT 2025 Sat May 31 02:10:34 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 04:22:54 EDT 2025 Fri Nov 04 08:20:50 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 88 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-bb3b95c574fbc7750f7a0b134aa142e09e183ae8b421824676c3db1c5e885b6f3 |
Notes | Toma Susi received his MSc in Engineering Physics from Helsinki University of Technology and his doctorate in Engineering Physics and Physics from Aalto University, Finland. He is currently an Associate Professor at the Faculty of Physics of the University of Vienna, Austria. He has worked on materials synthesis, spectroscopy, electron microscopy and modeling, primarily on heteroatom-doped graphene and carbon nanotubes. His research interests increasingly center on understanding and making use of focused electron irradiation to characterize and manipulate materials, and on simulating transmission electron microscopy from first principles. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2513-573X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9632407 |
PMID | 36260089 |
PQID | 2731414237 |
PQPubID | 2047502 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2731414237 crossref_citationtrail_10_1039_D2CC04807H proquest_miscellaneous_2726406954 crossref_primary_10_1039_D2CC04807H pubmedcentral_primary_oai_pubmedcentral_nih_gov_9632407 pubmed_primary_36260089 rsc_primary_d2cc04807h |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-03 |
PublicationDateYYYYMMDD | 2022-11-03 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Binnig (D2CC04807H/cit79/1) 1986; 56 Stroscio (D2CC04807H/cit88/1) 1991; 254 Thomson (D2CC04807H/cit18/1) 1927; 119 Roccapriore (D2CC04807H/cit150/1) 2022 Müller (D2CC04807H/cit13/1) 1956; 102 Sugimoto (D2CC04807H/cit84/1) 2007; 446 Mangler (D2CC04807H/cit145/1) 2022; 28 Treacy (D2CC04807H/cit22/1) 1989; 156 Hofer (D2CC04807H/cit53/1) 2019; 114 Zagler (D2CC04807H/cit40/1) 2022; 9 Chamberlain (D2CC04807H/cit114/1) 2015; 11 Sawada (D2CC04807H/cit97/1) 2009; 94 Gunawan (D2CC04807H/cit47/1) 2011; 11 Qiu (D2CC04807H/cit70/1) 2015; 54 Zhu (D2CC04807H/cit34/1) 2009; 8 Dyck (D2CC04807H/cit103/1) 2017; 111 Tang (D2CC04807H/cit5/1) 2010; 49 Rossell (D2CC04807H/cit48/1) 2012; 6 Yang (D2CC04807H/cit131/1) 2019; 122 Ramasse (D2CC04807H/cit52/1) 2013; 13 Dyck (D2CC04807H/cit75/1) 2021; 173 Dyck (D2CC04807H/cit74/1) 2020; 161 Spurgeon (D2CC04807H/cit146/1) 2021; 20 Zheng (D2CC04807H/cit87/1) 2010; 4 Wehling (D2CC04807H/cit111/1) 2009; 80 Kretschmer (D2CC04807H/cit142/1) 2020; 20 Hage (D2CC04807H/cit54/1) 2020; 367 Langer (D2CC04807H/cit72/1) 2020; 12 Custance (D2CC04807H/cit89/1) 2009; 4 Crewe (D2CC04807H/cit21/1) 1970; 168 Hudak (D2CC04807H/cit137/1) 2018; 12 Fuechsle (D2CC04807H/cit98/1) 2012; 7 Kimoto (D2CC04807H/cit45/1) 2007; 450 Meyer (D2CC04807H/cit108/1) 2008; 8 Batson (D2CC04807H/cit42/1) 1993; 366 Kotakoski (D2CC04807H/cit141/1) 2011; 83 Meyer (D2CC04807H/cit29/1) 2011; 10 Krivanek (D2CC04807H/cit37/1) Browning (D2CC04807H/cit43/1) 1993; 366 Pool (D2CC04807H/cit120/1) 2018 Erni (D2CC04807H/cit115/1) 2009; 102 Katnagallu (D2CC04807H/cit15/1) 2019; 21 Lingerfelt (D2CC04807H/cit143/1) 2021; 21 Ullah (D2CC04807H/cit77/1) 2022; 15 Lee (D2CC04807H/cit123/1) 2013; 4 van Benthem (D2CC04807H/cit26/1) 2005; 87 Hawkes (D2CC04807H/cit36/1) 2009; 367 Colliex (D2CC04807H/cit41/1) 2012; 123 Kawai (D2CC04807H/cit96/1) 2014; 5 Dyck (D2CC04807H/cit139/1) 2019; 4 Tsong (D2CC04807H/cit14/1) 2001; 67 Mishra (D2CC04807H/cit99/1) 2017; 42 Elibol (D2CC04807H/cit107/1) 2021; 15 Yang (D2CC04807H/cit124/1) 2014; 53 Dyck (D2CC04807H/cit127/1) 2018; 14 Lin (D2CC04807H/cit57/1) 2015; 115 Toulmin (D2CC04807H/cit6/1) 1970 Susi (D2CC04807H/cit134/1) 2017; 180 Jung (D2CC04807H/cit95/1) 1996; 271 Gan (D2CC04807H/cit28/1) 2008; 4 Dalton (D2CC04807H/cit2/1) 1808 Trentino (D2CC04807H/cit76/1) 2022; 9 Chisholm (D2CC04807H/cit60/1) 2012; 12 Jesse (D2CC04807H/cit136/1) 2018; 29 Markevich (D2CC04807H/cit117/1) 2021; 125 Sugimoto (D2CC04807H/cit94/1) 2005; 4 Warner (D2CC04807H/cit68/1) 2014; 8 Robertson (D2CC04807H/cit65/1) 2013; 13 Susi (D2CC04807H/cit129/1) 2016; 7 Tripathi (D2CC04807H/cit100/1) 2017 Varela (D2CC04807H/cit51/1) 2004; 92 Tararan (D2CC04807H/cit113/1) 2016; 28 Senga (D2CC04807H/cit59/1) 2015; 6 Postl (D2CC04807H/cit112/1) 2022; 196 Xu (D2CC04807H/cit138/1) 2019; 7 Egerton (D2CC04807H/cit44/1) 2009; 72 Susi (D2CC04807H/cit67/1) 2014; 113 Lovejoy (D2CC04807H/cit56/1) 2012; 100 Chang (D2CC04807H/cit118/1) 2014; 67 Zhao (D2CC04807H/cit132/1) 2021; 31 Lin (D2CC04807H/cit33/1) 2020; 59 Meyer (D2CC04807H/cit109/1) 2008; 454 Yoshimura (D2CC04807H/cit144/1) 2022 Voyles (D2CC04807H/cit24/1) 2002; 416 Dyck (D2CC04807H/cit151/1) 2019; 44 Susi (D2CC04807H/cit106/1) 2017; 4 Ma (D2CC04807H/cit133/1) 2018; 2 Susi (D2CC04807H/cit126/1) 2017; 7 Deng (D2CC04807H/cit69/1) 2015; 1 Erni (D2CC04807H/cit105/1) 2010; 82 Markevich (D2CC04807H/cit128/1) 2016; 120 Perrin (D2CC04807H/cit9/1) 1909; 18 Zhao (D2CC04807H/cit85/1) 2011; 333 Kalff (D2CC04807H/cit92/1) 2016; 11 Nosraty Alamdary (D2CC04807H/cit122/1) 2017; 254 Bosman (D2CC04807H/cit46/1) 2007; 99 Urban (D2CC04807H/cit30/1) 2013; 110 Bangert (D2CC04807H/cit62/1) 2013; 13 Wang (D2CC04807H/cit25/1) 2004; 3 Crommie (D2CC04807H/cit91/1) 1993; 262 Zhao (D2CC04807H/cit140/1) 2021; 33 Ziatdinov (D2CC04807H/cit147/1) 2017; 11 Thackray (D2CC04807H/cit3/1) 1966; 57 Gross (D2CC04807H/cit81/1) 2009; 325 Khajetoorians (D2CC04807H/cit93/1) 2019; 1 Su (D2CC04807H/cit71/1) 2019; 5 Soddy (D2CC04807H/cit12/1) 1913; 92 Giessibl (D2CC04807H/cit80/1) 1995; 267 Zhou (D2CC04807H/cit61/1) 2012; 7 Rutherford (D2CC04807H/cit11/1) 1911; 21 Suenaga (D2CC04807H/cit50/1) 2000; 290 Chen (D2CC04807H/cit125/1) 2015; 9 Planck (D2CC04807H/cit7/1) 1896; 293 Davisson (D2CC04807H/cit19/1) 1928; 14 Eigler (D2CC04807H/cit90/1) 1990; 344 Ruska (D2CC04807H/cit20/1) 1980 Ramasse (D2CC04807H/cit102/1) 2012; 6 He (D2CC04807H/cit66/1) 2014; 14 DAlfonso (D2CC04807H/cit49/1) 2010; 81 Madsen (D2CC04807H/cit148/1) 2019; 25 Müller (D2CC04807H/cit16/1) 1968; 39 Nellist (D2CC04807H/cit23/1) 1996; 274 Tripathi (D2CC04807H/cit73/1) 2018; 12 Inada (D2CC04807H/cit35/1) 2011; 111 Inani (D2CC04807H/cit104/1) 2019; 123 Mustonen (D2CC04807H/cit116/1) 2019; 29 Joy (D2CC04807H/cit1/1) 1988 Langer (D2CC04807H/cit58/1) 2022; 5 Gault (D2CC04807H/cit17/1) 2021; 1 Thomson (D2CC04807H/cit10/1) 1897; 44 Hofer (D2CC04807H/cit83/1) 1998; 405 Krivanek (D2CC04807H/cit39/1) 2010; 464 Postl (D2CC04807H/cit149/1) Czerw (D2CC04807H/cit86/1) 2001; 1 Ishikawa (D2CC04807H/cit31/1) 2011; 10 Chirita (D2CC04807H/cit135/1) 2022; 105 de Graaf (D2CC04807H/cit32/1) 2020; 6 Tripathi (D2CC04807H/cit121/1) 2018; 18 Suenaga (D2CC04807H/cit55/1) 2012; 6 Wang (D2CC04807H/cit64/1) 2012; 12 Susi (D2CC04807H/cit119/1) 2015; 1 Butz (D2CC04807H/cit101/1) 2016; 55 Iijima (D2CC04807H/cit27/1) 1971; 42 Cameron (D2CC04807H/cit4/1) 1900; 11 Susi (D2CC04807H/cit63/1) 2017; 4 Einstein (D2CC04807H/cit8/1) 1905; 322 Stipe (D2CC04807H/cit82/1) 1998; 280 Susi (D2CC04807H/cit130/1) 2019; 1 Haider (D2CC04807H/cit38/1) 1998; 392 Egerton (D2CC04807H/cit110/1) 2013; 19 Binnig (D2CC04807H/cit78/1) 1982; 49 |
References_xml | – issn: 1980 publication-title: The Early Development of Electron Lenses and Electron Microscopy doi: Ruska – issn: 1988 publication-title: Gassendi the Atomist: Advocate of History in an Age of Science doi: Joy – issn: 1808 publication-title: A New System of Chemical Philosophy doi: Dalton – doi: Krivanek Dellby Spence Camps Brown – issn: 1970 publication-title: Physical reality; philosophical essays on twentieth-century physics doi: Toulmin – doi: Postl – issn: 2018 publication-title: Microscopy and Analysis doi: Pool – volume: 1 start-page: 703 year: 2019 ident: D2CC04807H/cit93/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0108-5 – volume: 125 start-page: 16041 year: 2021 ident: D2CC04807H/cit117/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03549 – volume: 123 start-page: 80 year: 2012 ident: D2CC04807H/cit41/1 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.04.003 – volume: 100 start-page: 154101 year: 2012 ident: D2CC04807H/cit56/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3701598 – volume: 55 start-page: 15771 year: 2016 ident: D2CC04807H/cit101/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201608377 – volume: 28 start-page: 3741 year: 2016 ident: D2CC04807H/cit113/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00590 – volume: 173 start-page: 205 year: 2021 ident: D2CC04807H/cit75/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.11.015 – volume-title: A New System of Chemical Philosophy year: 1808 ident: D2CC04807H/cit2/1 doi: 10.5479/sil.324338.39088000885681 – volume: 4 start-page: 587 year: 2008 ident: D2CC04807H/cit28/1 publication-title: Small doi: 10.1002/smll.200700929 – volume: 59 start-page: 20348 year: 2020 ident: D2CC04807H/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006562 – volume: 7 start-page: 242 year: 2012 ident: D2CC04807H/cit98/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.21 – volume: 20 start-page: 2865 year: 2020 ident: D2CC04807H/cit142/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00670 – volume-title: Physical reality; philosophical essays on twentieth-century physics year: 1970 ident: D2CC04807H/cit6/1 – volume: 280 start-page: 1732 year: 1998 ident: D2CC04807H/cit82/1 publication-title: Science doi: 10.1126/science.280.5370.1732 – volume: 20 start-page: 274 year: 2021 ident: D2CC04807H/cit146/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00833-z – volume: 119 start-page: 890 year: 1927 ident: D2CC04807H/cit18/1 publication-title: Nature doi: 10.1038/119890a0 – volume: 92 start-page: 095502 year: 2004 ident: D2CC04807H/cit51/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.095502 – volume: 7 start-page: 050901 year: 2019 ident: D2CC04807H/cit138/1 publication-title: APL Mater. doi: 10.1063/1.5096584 – volume: 44 start-page: 669 year: 2019 ident: D2CC04807H/cit151/1 publication-title: MRS Bull. doi: 10.1557/mrs.2019.211 – volume: 156 start-page: 211 year: 1989 ident: D2CC04807H/cit22/1 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1989.tb02920.x – volume: 392 start-page: 768 year: 1998 ident: D2CC04807H/cit38/1 publication-title: Nature doi: 10.1038/33823 – volume: 366 start-page: 727 year: 1993 ident: D2CC04807H/cit42/1 publication-title: Nature doi: 10.1038/366727a0 – volume: 29 start-page: 1901327 year: 2019 ident: D2CC04807H/cit116/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901327 – volume: 67 start-page: 16 year: 2014 ident: D2CC04807H/cit118/1 publication-title: Phys. Today doi: 10.1063/PT.3.2503 – volume: 1 start-page: e1500462 year: 2015 ident: D2CC04807H/cit69/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 102 start-page: 096101 year: 2009 ident: D2CC04807H/cit115/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.096101 – volume: 4 start-page: 156 year: 2005 ident: D2CC04807H/cit94/1 publication-title: Nat. Mater. doi: 10.1038/nmat1297 – volume: 12 start-page: 5873 year: 2018 ident: D2CC04807H/cit137/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b02001 – volume: 11 start-page: 926 year: 2016 ident: D2CC04807H/cit92/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.131 – volume: 11 start-page: 622 year: 2015 ident: D2CC04807H/cit114/1 publication-title: Small doi: 10.1002/smll.201402081 – volume: 114 start-page: 053102 year: 2019 ident: D2CC04807H/cit53/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5063449 – volume: 271 start-page: 181 year: 1996 ident: D2CC04807H/cit95/1 publication-title: Science doi: 10.1126/science.271.5246.181 – volume: 7 start-page: 4399 year: 2017 ident: D2CC04807H/cit126/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-04683-9 – volume: 15 start-page: 14373 year: 2021 ident: D2CC04807H/cit107/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c03535 – volume: 12 start-page: 4641 year: 2018 ident: D2CC04807H/cit73/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b01191 – volume: 416 start-page: 826 year: 2002 ident: D2CC04807H/cit24/1 publication-title: Nature doi: 10.1038/416826a – volume: 18 start-page: 5 year: 1909 ident: D2CC04807H/cit9/1 publication-title: Ann. Chim. Phys. – volume: 13 start-page: 1468 year: 2013 ident: D2CC04807H/cit65/1 publication-title: Nano Lett. doi: 10.1021/nl304495v – volume: 8 start-page: 11806 year: 2014 ident: D2CC04807H/cit68/1 publication-title: ACS Nano doi: 10.1021/nn5054798 – volume: 49 start-page: 9574 year: 2010 ident: D2CC04807H/cit5/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201002332 – volume: 4 start-page: 042004 year: 2017 ident: D2CC04807H/cit106/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa878f – volume: 42 start-page: 5891 year: 1971 ident: D2CC04807H/cit27/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1660042 – volume: 81 start-page: 100101 year: 2010 ident: D2CC04807H/cit49/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.100101 – volume: 92 start-page: 399 year: 1913 ident: D2CC04807H/cit12/1 publication-title: Nature doi: 10.1038/092399c0 – volume: 367 start-page: 3637 year: 2009 ident: D2CC04807H/cit36/1 publication-title: Philos. Trans. R. Soc. London, Ser. A – volume: 168 start-page: 1338 year: 1970 ident: D2CC04807H/cit21/1 publication-title: Science doi: 10.1126/science.168.3937.1338 – volume: 15 start-page: 1310 year: 2022 ident: D2CC04807H/cit77/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3655-x – ident: D2CC04807H/cit149/1 – volume: 80 start-page: 085428 year: 2009 ident: D2CC04807H/cit111/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.085428 – volume: 21 start-page: 669 year: 1911 ident: D2CC04807H/cit11/1 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. doi: 10.1080/14786440508637080 – volume: 21 start-page: 123020 year: 2019 ident: D2CC04807H/cit15/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab5cc4 – volume: 56 start-page: 930 year: 1986 ident: D2CC04807H/cit79/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.930 – volume: 42 start-page: 644 year: 2017 ident: D2CC04807H/cit99/1 publication-title: MRS Bull. doi: 10.1557/mrs.2017.187 – volume: 122 start-page: 106101 year: 2019 ident: D2CC04807H/cit131/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.106101 – start-page: 1700124 year: 2017 ident: D2CC04807H/cit100/1 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201700124 – volume: 123 start-page: 13136 year: 2019 ident: D2CC04807H/cit104/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01894 – volume: 11 start-page: 5553 year: 2011 ident: D2CC04807H/cit47/1 publication-title: Nano Lett. doi: 10.1021/nl2034688 – volume: 28 start-page: 2940 year: 2022 ident: D2CC04807H/cit145/1 publication-title: Microsc. Microanal. doi: 10.1017/S1431927622011023 – volume: 18 start-page: 5319 year: 2018 ident: D2CC04807H/cit121/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02406 – volume-title: Gassendi the Atomist: Advocate of History in an Age of Science year: 1988 ident: D2CC04807H/cit1/1 doi: 10.1017/CBO9780511521416 – volume: 13 start-page: 4902 year: 2013 ident: D2CC04807H/cit62/1 publication-title: Nano Lett. doi: 10.1021/nl402812y – volume: 9 start-page: 9497 year: 2015 ident: D2CC04807H/cit125/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b03476 – volume-title: Microscopy and Analysis year: 2018 ident: D2CC04807H/cit120/1 – volume: 7 start-page: 13040 year: 2016 ident: D2CC04807H/cit129/1 publication-title: Nat. Commun. doi: 10.1038/ncomms13040 – volume-title: The Early Development of Electron Lenses and Electron Microscopy year: 1980 ident: D2CC04807H/cit20/1 – volume: 5 start-page: 1562 year: 2022 ident: D2CC04807H/cit58/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c04309 – volume: 367 start-page: 1124 year: 2020 ident: D2CC04807H/cit54/1 publication-title: Science doi: 10.1126/science.aba1136 – volume: 254 start-page: 1700188 year: 2017 ident: D2CC04807H/cit122/1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201700188 – volume: 12 start-page: 141 year: 2012 ident: D2CC04807H/cit64/1 publication-title: Nano Lett. doi: 10.1021/nl2031629 – volume: 120 start-page: 21998 year: 2016 ident: D2CC04807H/cit128/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b06554 – volume: 115 start-page: 206803 year: 2015 ident: D2CC04807H/cit57/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.206803 – volume: 196 start-page: 596 year: 2022 ident: D2CC04807H/cit112/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.05.039 – volume: 111 start-page: 865 year: 2011 ident: D2CC04807H/cit35/1 publication-title: Special Issue, J. Spence's 65th birthday – volume: 83 start-page: 245420 year: 2011 ident: D2CC04807H/cit141/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.245420 – volume: 14 start-page: 317 year: 1928 ident: D2CC04807H/cit19/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.14.4.317 – volume: 405 start-page: L514 year: 1998 ident: D2CC04807H/cit83/1 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(98)00140-X – volume: 262 start-page: 218 year: 1993 ident: D2CC04807H/cit91/1 publication-title: Science doi: 10.1126/science.262.5131.218 – volume: 99 start-page: 086102 year: 2007 ident: D2CC04807H/cit46/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.086102 – volume: 6 start-page: 545 year: 2012 ident: D2CC04807H/cit55/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.148 – volume: 105 start-page: 235419 year: 2022 ident: D2CC04807H/cit135/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.235419 – volume: 2 start-page: 456 year: 2018 ident: D2CC04807H/cit133/1 publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00548B – volume: 180 start-page: 163 year: 2017 ident: D2CC04807H/cit134/1 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.03.005 – volume: 44 start-page: 293 year: 1897 ident: D2CC04807H/cit10/1 publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci. doi: 10.1080/14786449708621070 – volume: 54 start-page: 14031 year: 2015 ident: D2CC04807H/cit70/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507381 – volume: 366 start-page: 143 year: 1993 ident: D2CC04807H/cit43/1 publication-title: Nature doi: 10.1038/366143a0 – volume: 1 start-page: 397 year: 2019 ident: D2CC04807H/cit130/1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0058-y – volume: 10 start-page: 209 year: 2011 ident: D2CC04807H/cit29/1 publication-title: Nat. Mater. doi: 10.1038/nmat2941 – volume: 344 start-page: 524 year: 1990 ident: D2CC04807H/cit90/1 publication-title: Nature doi: 10.1038/344524a0 – volume: 111 start-page: 113104 year: 2017 ident: D2CC04807H/cit103/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4998599 – volume: 67 start-page: 235 year: 2001 ident: D2CC04807H/cit14/1 publication-title: Prog. Surf. Sci. doi: 10.1016/S0079-6816(01)00026-0 – volume: 267 start-page: 68 year: 1995 ident: D2CC04807H/cit80/1 publication-title: Science doi: 10.1126/science.267.5194.68 – volume: 322 start-page: 549 year: 1905 ident: D2CC04807H/cit8/1 publication-title: Ann. Phys. doi: 10.1002/andp.19053220806 – volume: 7 start-page: 161 year: 2012 ident: D2CC04807H/cit61/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.252 – volume: 82 start-page: 165443 year: 2010 ident: D2CC04807H/cit105/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.82.165443 – volume: 33 start-page: 063001 year: 2021 ident: D2CC04807H/cit140/1 publication-title: J. Phys.: Condens. Matter – volume: 6 start-page: eaay4312 year: 2020 ident: D2CC04807H/cit32/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4312 – volume: 5 start-page: 4403 year: 2014 ident: D2CC04807H/cit96/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5403 – volume: 8 start-page: 3582 year: 2008 ident: D2CC04807H/cit108/1 publication-title: Nano Lett. doi: 10.1021/nl801386m – volume: 19 start-page: 479 year: 2013 ident: D2CC04807H/cit110/1 publication-title: Microsc. Microanal. doi: 10.1017/S1431927612014274 – volume: 31 start-page: 2105132 year: 2021 ident: D2CC04807H/cit132/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105132 – volume: 3 start-page: 143 year: 2004 ident: D2CC04807H/cit25/1 publication-title: Nat. Mater. doi: 10.1038/nmat1077 – volume: 11 start-page: 608 year: 1900 ident: D2CC04807H/cit4/1 publication-title: Science doi: 10.1126/science.11.277.608 – volume: 4 start-page: 4165 year: 2010 ident: D2CC04807H/cit87/1 publication-title: ACS Nano doi: 10.1021/nn1002425 – volume: 9 start-page: 035009 year: 2022 ident: D2CC04807H/cit40/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac6c30 – volume: 53 start-page: 8908 year: 2014 ident: D2CC04807H/cit124/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201403382 – volume: 102 start-page: 624 year: 1956 ident: D2CC04807H/cit13/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.102.624 – volume: 110 start-page: 185507 year: 2013 ident: D2CC04807H/cit30/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.185507 – volume: 13 start-page: 4989 year: 2013 ident: D2CC04807H/cit52/1 publication-title: Nano Lett. doi: 10.1021/nl304187e – volume: 12 start-page: 4651 year: 2012 ident: D2CC04807H/cit60/1 publication-title: Nano Lett. doi: 10.1021/nl301952e – volume: 4 start-page: 1650 year: 2013 ident: D2CC04807H/cit123/1 publication-title: Nature – volume: 14 start-page: 1801771 year: 2018 ident: D2CC04807H/cit127/1 publication-title: Small doi: 10.1002/smll.201801771 – volume: 49 start-page: 57 year: 1982 ident: D2CC04807H/cit78/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.57 – volume: 454 start-page: 319 year: 2008 ident: D2CC04807H/cit109/1 publication-title: Nature doi: 10.1038/nature07094 – volume: 21 start-page: 236 year: 2021 ident: D2CC04807H/cit143/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03587 – volume: 8 start-page: 808 year: 2009 ident: D2CC04807H/cit34/1 publication-title: Nat. Mater. doi: 10.1038/nmat2532 – volume: 4 start-page: 803 year: 2009 ident: D2CC04807H/cit89/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.347 – volume: 94 start-page: 173117 year: 2009 ident: D2CC04807H/cit97/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3127503 – volume: 12 start-page: 34074 year: 2020 ident: D2CC04807H/cit72/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c07564 – volume: 29 start-page: 255303 year: 2018 ident: D2CC04807H/cit136/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/aabb79 – volume: 39 start-page: 83 year: 1968 ident: D2CC04807H/cit16/1 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1683116 – ident: D2CC04807H/cit37/1 – volume: 446 start-page: 64 year: 2007 ident: D2CC04807H/cit84/1 publication-title: Nature doi: 10.1038/nature05530 – volume: 325 start-page: 1110 year: 2009 ident: D2CC04807H/cit81/1 publication-title: Science doi: 10.1126/science.1176210 – volume: 11 start-page: 12742 year: 2017 ident: D2CC04807H/cit147/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b07504 – volume: 274 start-page: 413 year: 1996 ident: D2CC04807H/cit23/1 publication-title: Science doi: 10.1126/science.274.5286.413 – volume: 6 start-page: 4063 year: 2012 ident: D2CC04807H/cit102/1 publication-title: ACS Nano doi: 10.1021/nn300452y – volume: 161 start-page: 750 year: 2020 ident: D2CC04807H/cit74/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.01.042 – volume: 10 start-page: 278 year: 2011 ident: D2CC04807H/cit31/1 publication-title: Nat. Mater. doi: 10.1038/nmat2957 – volume: 254 start-page: 1319 year: 1991 ident: D2CC04807H/cit88/1 publication-title: Science doi: 10.1126/science.254.5036.1319 – volume: 9 start-page: 025011 year: 2022 ident: D2CC04807H/cit76/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/ac4e9c – volume: 14 start-page: 3766 year: 2014 ident: D2CC04807H/cit66/1 publication-title: Nano Lett. doi: 10.1021/nl500682j – volume: 5 start-page: eaav2252 year: 2019 ident: D2CC04807H/cit71/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2252 – volume: 4 start-page: 497 year: 2019 ident: D2CC04807H/cit139/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0118-z – volume: 1 start-page: 51 year: 2021 ident: D2CC04807H/cit17/1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00047-w – volume: 72 start-page: 016502 year: 2009 ident: D2CC04807H/cit44/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/72/1/016502 – volume: 450 start-page: 702 year: 2007 ident: D2CC04807H/cit45/1 publication-title: Nature doi: 10.1038/nature06352 – volume: 290 start-page: 2280 year: 2000 ident: D2CC04807H/cit50/1 publication-title: Science doi: 10.1126/science.290.5500.2280 – volume: 6 start-page: 7077 year: 2012 ident: D2CC04807H/cit48/1 publication-title: ACS Nano doi: 10.1021/nn3021212 – volume: 4 start-page: 021013 year: 2017 ident: D2CC04807H/cit63/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5e78 – year: 2022 ident: D2CC04807H/cit150/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c07451 – volume: 87 start-page: 034104 year: 2005 ident: D2CC04807H/cit26/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1991989 – volume: 464 start-page: 571 year: 2010 ident: D2CC04807H/cit39/1 publication-title: Nature doi: 10.1038/nature08879 – volume: 6 start-page: 7943 year: 2015 ident: D2CC04807H/cit59/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8943 – volume: 333 start-page: 999 year: 2011 ident: D2CC04807H/cit85/1 publication-title: Science doi: 10.1126/science.1208759 – volume: 293 start-page: 72 year: 1896 ident: D2CC04807H/cit7/1 publication-title: Ann. Phys. doi: 10.1002/andp.18962930107 – volume: 57 start-page: 35 year: 1966 ident: D2CC04807H/cit3/1 publication-title: Isis doi: 10.1086/350077 – year: 2022 ident: D2CC04807H/cit144/1 publication-title: Nanoscale doi: 10.1039/D2NR01018F – volume: 113 start-page: 115501 year: 2014 ident: D2CC04807H/cit67/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.115501 – volume: 1 start-page: e7479 year: 2015 ident: D2CC04807H/cit119/1 publication-title: Res. Ideas Outcomes doi: 10.3897/rio.1.e7479 – volume: 25 start-page: 166 year: 2019 ident: D2CC04807H/cit148/1 publication-title: Microsc. Microanal. doi: 10.1017/S1431927619001569 – volume: 1 start-page: 457 year: 2001 ident: D2CC04807H/cit86/1 publication-title: Nano Lett. doi: 10.1021/nl015549q |
SSID | ssj0000158 |
Score | 2.4423554 |
SecondaryResourceType | review_article |
Snippet | The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12274 |
SubjectTerms | Carbon nanotubes Chemistry Crystal structure Electron beams Electron irradiation Graphene Graphite - chemistry Microscopy, Electron, Scanning Transmission Nanotubes, Carbon - chemistry Radiation damage Scanning probe microscopes Scanning transmission electron microscopy Silicon - chemistry Thermal stability |
Title | Identifying and manipulating single atoms with scanning transmission electron microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36260089 https://www.proquest.com/docview/2731414237 https://www.proquest.com/docview/2726406954 https://pubmed.ncbi.nlm.nih.gov/PMC9632407 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1364-548X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000158 issn: 1359-7345 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY7gEuiNdCYUFGICRUBRLbefi4Kl0VVJYDqZRbFDuOFmk3XbbthV_PjJ1X1R4WLlGVWI2V78tkZuyZj5D3ZRnwSpfwIiWJ8ISKY68oYuUJ5peBiitwyjFQ_H4RzZfiWxZmvVKhrS7ZqE_6z8G6kv9BFc4Brlgl-w_Idn8KJ-A34AtHQBiOd8LYVdm6SiVMgGMvC6fHhUkCOFyZCQTV100J21o7gSLUhajXADBmyiatEM7kGvfmYZXKzkpv11FAD0tJbK62q_eyBtWpgQwyCz-3a7tVIF01tr9JLkBciglTPrCHPBIeBDWZ-1wcONcY0TAZkMUJ9TUmMWDM6fDsGWufY6_TkmltC9sv-09Suwx_8SM_Xy4WeTrL0g83vz0UC8NF9UY55YgcsziK2Igcn83Sr4tB3zArzNrNtO1Ly-Xn_na7nsheeLG_S_bothWFsc5H-og8bKIGeuYo8JjcM_UTcn_aivU9JdmAChRgoEMqUEcFaqlAkQq0pQIdUoG2VKA9FZ6R5fksnc69RjTD0xBJbjyluJKhDmNRKR2DP1jFha8CLooiEMz40oARL0yiBPbuh89kpHmpAh2aJAlVVPETMqpXtXlBaKBYWEoYIgHBRDFppGEq4VXBQ62EHJOP7QPMddNRHoVNrnK7s4HL_AubTu3Dno_Ju27sjeujcnDUaYtD3rxn6xwc7EAEuH1rTN52l-HJ4NJWUZvVFseAY-9HMhRj8tzB1t0GGy6BpwvTjXcA7QZgh_XdK_WvS9tpXaKYgQ_3PQHou_E9hV7eYUKvyIP-zTolo83t1rwGR3aj3jS0_QsGxqSU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+manipulating+single+atoms+with+scanning+transmission+electron+microscopy&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Susi%2C+Toma&rft.date=2022-11-03&rft.issn=1364-548X&rft.eissn=1364-548X&rft.volume=58&rft.issue=88&rft.spage=12274&rft_id=info:doi/10.1039%2Fd2cc04807h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |