Identifying and manipulating single atoms with scanning transmission electron microscopy

The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including therm...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 58; no. 88; pp. 12274 - 12285
Main Author Susi, Toma
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 03.11.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN1359-7345
1364-548X
1364-548X
DOI10.1039/d2cc04807h

Cover

Abstract The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future. A focused electron beam can be used to manipulate covalently bound impurities within crystal lattices with atomic precision.
AbstractList The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future.The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future.
The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future.
The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a scanning transmission electron microscope instead of a physical tip in a scanning probe microscope confers several benefits, including thermal stability of the manipulated structures, the ability to reach into bulk crystals, and the chemical identification of single atoms. However, energetic electron irradiation also presents unique challenges, with an inevitable possibility of irradiation damage. Understanding the underlying mechanisms will undoubtedly continue to play an important role to guide experiments. Great progress has been made in several materials including graphene, carbon nanotubes, and crystalline silicon in the eight years since the discovery of electron-beam manipulation, but the important challenges that remain will determine how far we can expect to progress in the near future. A focused electron beam can be used to manipulate covalently bound impurities within crystal lattices with atomic precision.
Author Susi, Toma
AuthorAffiliation Faculty of Physics
University of Vienna
AuthorAffiliation_xml – name: University of Vienna
– name: Faculty of Physics
Author_xml – sequence: 1
  givenname: Toma
  surname: Susi
  fullname: Susi, Toma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36260089$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rFTEUhoO02A_duFcG3IgwNd_JbApyq7ZQcKPQXUgymd6UmeSaZJT775vxttWWZpEckue8vOecHIG9EIMD4A2CJwiS7lOPrYVUQrF-AQ4R4bRlVF7tLTHrWkEoOwBHOd_AuhCTL8EB4ZhDKLtDcHXRu1D8sPXhutGhbyYd_GYedVkuct1G1-gSp9z88WXdZKtDWJ5K0iFPPmcfQ-NGZ0uqweRtitnGzfYV2B_0mN3ru_MY_Pz65cfqvL38_u1i9fmytRTL0hpDTMcsE3QwVggGB6GhQYRqjSh2sHNIEu2koRhJTLnglvQGWeakZIYP5Bic7nQ3s5lcb2s1SY9qk_yk01ZF7dXjl-DX6jr-Vh0nmEJRBT7cCaT4a3a5qFqVdeOog4tzVlhgTiHvGK3o-yfoTZxTqOVViiBaHZNF8N3_jh6s3De9AnAHLL3KyQ3K-lIbHheDflQIqmWu6gyvVn_nel5TPj5JuVd9Fn67g1O2D9y_T0JuAcNRrlI
CitedBy_id crossref_primary_10_1093_jmicro_dfae007
crossref_primary_10_1093_micmic_ozad067_704
crossref_primary_10_1002_adma_202403989
Cites_doi 10.1038/s42254-019-0108-5
10.1021/acs.jpcc.1c03549
10.1016/j.ultramic.2012.04.003
10.1063/1.3701598
10.1002/anie.201608377
10.1021/acs.chemmater.6b00590
10.1016/j.carbon.2020.11.015
10.5479/sil.324338.39088000885681
10.1002/smll.200700929
10.1002/anie.202006562
10.1038/nnano.2012.21
10.1021/acs.nanolett.0c00670
10.1126/science.280.5370.1732
10.1038/s41563-020-00833-z
10.1038/119890a0
10.1103/PhysRevLett.92.095502
10.1063/1.5096584
10.1557/mrs.2019.211
10.1111/j.1365-2818.1989.tb02920.x
10.1038/33823
10.1038/366727a0
10.1002/adfm.201901327
10.1063/PT.3.2503
10.1126/sciadv.1500462
10.1103/PhysRevLett.102.096101
10.1038/nmat1297
10.1021/acsnano.8b02001
10.1038/nnano.2016.131
10.1002/smll.201402081
10.1063/1.5063449
10.1126/science.271.5246.181
10.1038/s41598-017-04683-9
10.1021/acsnano.1c03535
10.1021/acsnano.8b01191
10.1038/416826a
10.1021/nl304495v
10.1021/nn5054798
10.1002/anie.201002332
10.1088/2053-1583/aa878f
10.1063/1.1660042
10.1103/PhysRevB.81.100101
10.1038/092399c0
10.1126/science.168.3937.1338
10.1007/s12274-021-3655-x
10.1103/PhysRevB.80.085428
10.1080/14786440508637080
10.1088/1367-2630/ab5cc4
10.1103/PhysRevLett.56.930
10.1557/mrs.2017.187
10.1103/PhysRevLett.122.106101
10.1002/pssr.201700124
10.1021/acs.jpcc.9b01894
10.1021/nl2034688
10.1017/S1431927622011023
10.1021/acs.nanolett.8b02406
10.1017/CBO9780511521416
10.1021/nl402812y
10.1021/acsnano.5b03476
10.1038/ncomms13040
10.1021/acsanm.1c04309
10.1126/science.aba1136
10.1002/pssb.201700188
10.1021/nl2031629
10.1021/acs.jpcc.6b06554
10.1103/PhysRevLett.115.206803
10.1016/j.carbon.2022.05.039
10.1103/PhysRevB.83.245420
10.1073/pnas.14.4.317
10.1016/S0039-6028(98)00140-X
10.1126/science.262.5131.218
10.1103/PhysRevLett.99.086102
10.1038/nphoton.2012.148
10.1103/PhysRevB.105.235419
10.1039/C7QM00548B
10.1016/j.ultramic.2017.03.005
10.1080/14786449708621070
10.1002/anie.201507381
10.1038/366143a0
10.1038/s42254-019-0058-y
10.1038/nmat2941
10.1038/344524a0
10.1063/1.4998599
10.1016/S0079-6816(01)00026-0
10.1126/science.267.5194.68
10.1002/andp.19053220806
10.1038/nnano.2011.252
10.1103/PhysRevB.82.165443
10.1126/sciadv.aay4312
10.1038/ncomms5403
10.1021/nl801386m
10.1017/S1431927612014274
10.1002/adfm.202105132
10.1038/nmat1077
10.1126/science.11.277.608
10.1021/nn1002425
10.1088/2053-1583/ac6c30
10.1002/anie.201403382
10.1103/PhysRev.102.624
10.1103/PhysRevLett.110.185507
10.1021/nl304187e
10.1021/nl301952e
10.1002/smll.201801771
10.1103/PhysRevLett.49.57
10.1038/nature07094
10.1021/acs.nanolett.0c03587
10.1038/nmat2532
10.1038/nnano.2009.347
10.1063/1.3127503
10.1021/acsami.0c07564
10.1088/1361-6528/aabb79
10.1063/1.1683116
10.1038/nature05530
10.1126/science.1176210
10.1021/acsnano.7b07504
10.1126/science.274.5286.413
10.1021/nn300452y
10.1016/j.carbon.2020.01.042
10.1038/nmat2957
10.1126/science.254.5036.1319
10.1088/2053-1583/ac4e9c
10.1021/nl500682j
10.1126/sciadv.aav2252
10.1038/s41578-019-0118-z
10.1038/s43586-021-00047-w
10.1088/0034-4885/72/1/016502
10.1038/nature06352
10.1126/science.290.5500.2280
10.1021/nn3021212
10.1088/2053-1583/aa5e78
10.1021/acsnano.2c07451
10.1063/1.1991989
10.1038/nature08879
10.1038/ncomms8943
10.1126/science.1208759
10.1002/andp.18962930107
10.1086/350077
10.1039/D2NR01018F
10.1103/PhysRevLett.113.115501
10.3897/rio.1.e7479
10.1017/S1431927619001569
10.1021/nl015549q
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
– notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1039/d2cc04807h
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 12285
ExternalDocumentID PMC9632407
36260089
10_1039_D2CC04807H
d2cc04807h
Genre Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 28322
– fundername: ;
  grantid: 756277-ATMEN
– fundername: ;
  grantid: P 28322-N36
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
1TJ
29B
4.4
5GY
6J9
705
70J
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CAG
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
H13
HZ~
H~N
IDZ
IH2
J3I
N9A
O9-
P2P
R7B
R7C
R7D
RCNCU
RPMJG
RRA
RRC
RSCEA
SJN
SKA
SKF
SKH
SLH
TN5
TWZ
UPT
VH6
VQA
WH7
X7L
53G
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACBEA
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
M4U
R56
RAOCF
CGR
CUY
CVF
ECM
EIF
NPM
2WC
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c428t-bb3b95c574fbc7750f7a0b134aa142e09e183ae8b421824676c3db1c5e885b6f3
ISSN 1359-7345
1364-548X
IngestDate Thu Aug 21 18:39:14 EDT 2025
Fri Jul 11 15:21:14 EDT 2025
Mon Jun 30 13:10:57 EDT 2025
Sat May 31 02:10:34 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 04:22:54 EDT 2025
Fri Nov 04 08:20:50 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 88
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-bb3b95c574fbc7750f7a0b134aa142e09e183ae8b421824676c3db1c5e885b6f3
Notes Toma Susi received his MSc in Engineering Physics from Helsinki University of Technology and his doctorate in Engineering Physics and Physics from Aalto University, Finland. He is currently an Associate Professor at the Faculty of Physics of the University of Vienna, Austria. He has worked on materials synthesis, spectroscopy, electron microscopy and modeling, primarily on heteroatom-doped graphene and carbon nanotubes. His research interests increasingly center on understanding and making use of focused electron irradiation to characterize and manipulate materials, and on simulating transmission electron microscopy from first principles.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2513-573X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9632407
PMID 36260089
PQID 2731414237
PQPubID 2047502
PageCount 12
ParticipantIDs proquest_journals_2731414237
crossref_citationtrail_10_1039_D2CC04807H
proquest_miscellaneous_2726406954
crossref_primary_10_1039_D2CC04807H
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9632407
pubmed_primary_36260089
rsc_primary_d2cc04807h
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-03
PublicationDateYYYYMMDD 2022-11-03
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2022
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Binnig (D2CC04807H/cit79/1) 1986; 56
Stroscio (D2CC04807H/cit88/1) 1991; 254
Thomson (D2CC04807H/cit18/1) 1927; 119
Roccapriore (D2CC04807H/cit150/1) 2022
Müller (D2CC04807H/cit13/1) 1956; 102
Sugimoto (D2CC04807H/cit84/1) 2007; 446
Mangler (D2CC04807H/cit145/1) 2022; 28
Treacy (D2CC04807H/cit22/1) 1989; 156
Hofer (D2CC04807H/cit53/1) 2019; 114
Zagler (D2CC04807H/cit40/1) 2022; 9
Chamberlain (D2CC04807H/cit114/1) 2015; 11
Sawada (D2CC04807H/cit97/1) 2009; 94
Gunawan (D2CC04807H/cit47/1) 2011; 11
Qiu (D2CC04807H/cit70/1) 2015; 54
Zhu (D2CC04807H/cit34/1) 2009; 8
Dyck (D2CC04807H/cit103/1) 2017; 111
Tang (D2CC04807H/cit5/1) 2010; 49
Rossell (D2CC04807H/cit48/1) 2012; 6
Yang (D2CC04807H/cit131/1) 2019; 122
Ramasse (D2CC04807H/cit52/1) 2013; 13
Dyck (D2CC04807H/cit75/1) 2021; 173
Dyck (D2CC04807H/cit74/1) 2020; 161
Spurgeon (D2CC04807H/cit146/1) 2021; 20
Zheng (D2CC04807H/cit87/1) 2010; 4
Wehling (D2CC04807H/cit111/1) 2009; 80
Kretschmer (D2CC04807H/cit142/1) 2020; 20
Hage (D2CC04807H/cit54/1) 2020; 367
Langer (D2CC04807H/cit72/1) 2020; 12
Custance (D2CC04807H/cit89/1) 2009; 4
Crewe (D2CC04807H/cit21/1) 1970; 168
Hudak (D2CC04807H/cit137/1) 2018; 12
Fuechsle (D2CC04807H/cit98/1) 2012; 7
Kimoto (D2CC04807H/cit45/1) 2007; 450
Meyer (D2CC04807H/cit108/1) 2008; 8
Batson (D2CC04807H/cit42/1) 1993; 366
Kotakoski (D2CC04807H/cit141/1) 2011; 83
Meyer (D2CC04807H/cit29/1) 2011; 10
Krivanek (D2CC04807H/cit37/1)
Browning (D2CC04807H/cit43/1) 1993; 366
Pool (D2CC04807H/cit120/1) 2018
Erni (D2CC04807H/cit115/1) 2009; 102
Katnagallu (D2CC04807H/cit15/1) 2019; 21
Lingerfelt (D2CC04807H/cit143/1) 2021; 21
Ullah (D2CC04807H/cit77/1) 2022; 15
Lee (D2CC04807H/cit123/1) 2013; 4
van Benthem (D2CC04807H/cit26/1) 2005; 87
Hawkes (D2CC04807H/cit36/1) 2009; 367
Colliex (D2CC04807H/cit41/1) 2012; 123
Kawai (D2CC04807H/cit96/1) 2014; 5
Dyck (D2CC04807H/cit139/1) 2019; 4
Tsong (D2CC04807H/cit14/1) 2001; 67
Mishra (D2CC04807H/cit99/1) 2017; 42
Elibol (D2CC04807H/cit107/1) 2021; 15
Yang (D2CC04807H/cit124/1) 2014; 53
Dyck (D2CC04807H/cit127/1) 2018; 14
Lin (D2CC04807H/cit57/1) 2015; 115
Toulmin (D2CC04807H/cit6/1) 1970
Susi (D2CC04807H/cit134/1) 2017; 180
Jung (D2CC04807H/cit95/1) 1996; 271
Gan (D2CC04807H/cit28/1) 2008; 4
Dalton (D2CC04807H/cit2/1) 1808
Trentino (D2CC04807H/cit76/1) 2022; 9
Chisholm (D2CC04807H/cit60/1) 2012; 12
Jesse (D2CC04807H/cit136/1) 2018; 29
Markevich (D2CC04807H/cit117/1) 2021; 125
Sugimoto (D2CC04807H/cit94/1) 2005; 4
Warner (D2CC04807H/cit68/1) 2014; 8
Robertson (D2CC04807H/cit65/1) 2013; 13
Susi (D2CC04807H/cit129/1) 2016; 7
Tripathi (D2CC04807H/cit100/1) 2017
Varela (D2CC04807H/cit51/1) 2004; 92
Tararan (D2CC04807H/cit113/1) 2016; 28
Senga (D2CC04807H/cit59/1) 2015; 6
Postl (D2CC04807H/cit112/1) 2022; 196
Xu (D2CC04807H/cit138/1) 2019; 7
Egerton (D2CC04807H/cit44/1) 2009; 72
Susi (D2CC04807H/cit67/1) 2014; 113
Lovejoy (D2CC04807H/cit56/1) 2012; 100
Chang (D2CC04807H/cit118/1) 2014; 67
Zhao (D2CC04807H/cit132/1) 2021; 31
Lin (D2CC04807H/cit33/1) 2020; 59
Meyer (D2CC04807H/cit109/1) 2008; 454
Yoshimura (D2CC04807H/cit144/1) 2022
Voyles (D2CC04807H/cit24/1) 2002; 416
Dyck (D2CC04807H/cit151/1) 2019; 44
Susi (D2CC04807H/cit106/1) 2017; 4
Ma (D2CC04807H/cit133/1) 2018; 2
Susi (D2CC04807H/cit126/1) 2017; 7
Deng (D2CC04807H/cit69/1) 2015; 1
Erni (D2CC04807H/cit105/1) 2010; 82
Markevich (D2CC04807H/cit128/1) 2016; 120
Perrin (D2CC04807H/cit9/1) 1909; 18
Zhao (D2CC04807H/cit85/1) 2011; 333
Kalff (D2CC04807H/cit92/1) 2016; 11
Nosraty Alamdary (D2CC04807H/cit122/1) 2017; 254
Bosman (D2CC04807H/cit46/1) 2007; 99
Urban (D2CC04807H/cit30/1) 2013; 110
Bangert (D2CC04807H/cit62/1) 2013; 13
Wang (D2CC04807H/cit25/1) 2004; 3
Crommie (D2CC04807H/cit91/1) 1993; 262
Zhao (D2CC04807H/cit140/1) 2021; 33
Ziatdinov (D2CC04807H/cit147/1) 2017; 11
Thackray (D2CC04807H/cit3/1) 1966; 57
Gross (D2CC04807H/cit81/1) 2009; 325
Khajetoorians (D2CC04807H/cit93/1) 2019; 1
Su (D2CC04807H/cit71/1) 2019; 5
Soddy (D2CC04807H/cit12/1) 1913; 92
Giessibl (D2CC04807H/cit80/1) 1995; 267
Zhou (D2CC04807H/cit61/1) 2012; 7
Rutherford (D2CC04807H/cit11/1) 1911; 21
Suenaga (D2CC04807H/cit50/1) 2000; 290
Chen (D2CC04807H/cit125/1) 2015; 9
Planck (D2CC04807H/cit7/1) 1896; 293
Davisson (D2CC04807H/cit19/1) 1928; 14
Eigler (D2CC04807H/cit90/1) 1990; 344
Ruska (D2CC04807H/cit20/1) 1980
Ramasse (D2CC04807H/cit102/1) 2012; 6
He (D2CC04807H/cit66/1) 2014; 14
DAlfonso (D2CC04807H/cit49/1) 2010; 81
Madsen (D2CC04807H/cit148/1) 2019; 25
Müller (D2CC04807H/cit16/1) 1968; 39
Nellist (D2CC04807H/cit23/1) 1996; 274
Tripathi (D2CC04807H/cit73/1) 2018; 12
Inada (D2CC04807H/cit35/1) 2011; 111
Inani (D2CC04807H/cit104/1) 2019; 123
Mustonen (D2CC04807H/cit116/1) 2019; 29
Joy (D2CC04807H/cit1/1) 1988
Langer (D2CC04807H/cit58/1) 2022; 5
Gault (D2CC04807H/cit17/1) 2021; 1
Thomson (D2CC04807H/cit10/1) 1897; 44
Hofer (D2CC04807H/cit83/1) 1998; 405
Krivanek (D2CC04807H/cit39/1) 2010; 464
Postl (D2CC04807H/cit149/1)
Czerw (D2CC04807H/cit86/1) 2001; 1
Ishikawa (D2CC04807H/cit31/1) 2011; 10
Chirita (D2CC04807H/cit135/1) 2022; 105
de Graaf (D2CC04807H/cit32/1) 2020; 6
Tripathi (D2CC04807H/cit121/1) 2018; 18
Suenaga (D2CC04807H/cit55/1) 2012; 6
Wang (D2CC04807H/cit64/1) 2012; 12
Susi (D2CC04807H/cit119/1) 2015; 1
Butz (D2CC04807H/cit101/1) 2016; 55
Iijima (D2CC04807H/cit27/1) 1971; 42
Cameron (D2CC04807H/cit4/1) 1900; 11
Susi (D2CC04807H/cit63/1) 2017; 4
Einstein (D2CC04807H/cit8/1) 1905; 322
Stipe (D2CC04807H/cit82/1) 1998; 280
Susi (D2CC04807H/cit130/1) 2019; 1
Haider (D2CC04807H/cit38/1) 1998; 392
Egerton (D2CC04807H/cit110/1) 2013; 19
Binnig (D2CC04807H/cit78/1) 1982; 49
References_xml – issn: 1980
  publication-title: The Early Development of Electron Lenses and Electron Microscopy
  doi: Ruska
– issn: 1988
  publication-title: Gassendi the Atomist: Advocate of History in an Age of Science
  doi: Joy
– issn: 1808
  publication-title: A New System of Chemical Philosophy
  doi: Dalton
– doi: Krivanek Dellby Spence Camps Brown
– issn: 1970
  publication-title: Physical reality; philosophical essays on twentieth-century physics
  doi: Toulmin
– doi: Postl
– issn: 2018
  publication-title: Microscopy and Analysis
  doi: Pool
– volume: 1
  start-page: 703
  year: 2019
  ident: D2CC04807H/cit93/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0108-5
– volume: 125
  start-page: 16041
  year: 2021
  ident: D2CC04807H/cit117/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03549
– volume: 123
  start-page: 80
  year: 2012
  ident: D2CC04807H/cit41/1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.04.003
– volume: 100
  start-page: 154101
  year: 2012
  ident: D2CC04807H/cit56/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3701598
– volume: 55
  start-page: 15771
  year: 2016
  ident: D2CC04807H/cit101/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201608377
– volume: 28
  start-page: 3741
  year: 2016
  ident: D2CC04807H/cit113/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00590
– volume: 173
  start-page: 205
  year: 2021
  ident: D2CC04807H/cit75/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.015
– volume-title: A New System of Chemical Philosophy
  year: 1808
  ident: D2CC04807H/cit2/1
  doi: 10.5479/sil.324338.39088000885681
– volume: 4
  start-page: 587
  year: 2008
  ident: D2CC04807H/cit28/1
  publication-title: Small
  doi: 10.1002/smll.200700929
– volume: 59
  start-page: 20348
  year: 2020
  ident: D2CC04807H/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006562
– volume: 7
  start-page: 242
  year: 2012
  ident: D2CC04807H/cit98/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.21
– volume: 20
  start-page: 2865
  year: 2020
  ident: D2CC04807H/cit142/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00670
– volume-title: Physical reality; philosophical essays on twentieth-century physics
  year: 1970
  ident: D2CC04807H/cit6/1
– volume: 280
  start-page: 1732
  year: 1998
  ident: D2CC04807H/cit82/1
  publication-title: Science
  doi: 10.1126/science.280.5370.1732
– volume: 20
  start-page: 274
  year: 2021
  ident: D2CC04807H/cit146/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00833-z
– volume: 119
  start-page: 890
  year: 1927
  ident: D2CC04807H/cit18/1
  publication-title: Nature
  doi: 10.1038/119890a0
– volume: 92
  start-page: 095502
  year: 2004
  ident: D2CC04807H/cit51/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.095502
– volume: 7
  start-page: 050901
  year: 2019
  ident: D2CC04807H/cit138/1
  publication-title: APL Mater.
  doi: 10.1063/1.5096584
– volume: 44
  start-page: 669
  year: 2019
  ident: D2CC04807H/cit151/1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2019.211
– volume: 156
  start-page: 211
  year: 1989
  ident: D2CC04807H/cit22/1
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1989.tb02920.x
– volume: 392
  start-page: 768
  year: 1998
  ident: D2CC04807H/cit38/1
  publication-title: Nature
  doi: 10.1038/33823
– volume: 366
  start-page: 727
  year: 1993
  ident: D2CC04807H/cit42/1
  publication-title: Nature
  doi: 10.1038/366727a0
– volume: 29
  start-page: 1901327
  year: 2019
  ident: D2CC04807H/cit116/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901327
– volume: 67
  start-page: 16
  year: 2014
  ident: D2CC04807H/cit118/1
  publication-title: Phys. Today
  doi: 10.1063/PT.3.2503
– volume: 1
  start-page: e1500462
  year: 2015
  ident: D2CC04807H/cit69/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 102
  start-page: 096101
  year: 2009
  ident: D2CC04807H/cit115/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.096101
– volume: 4
  start-page: 156
  year: 2005
  ident: D2CC04807H/cit94/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1297
– volume: 12
  start-page: 5873
  year: 2018
  ident: D2CC04807H/cit137/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02001
– volume: 11
  start-page: 926
  year: 2016
  ident: D2CC04807H/cit92/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.131
– volume: 11
  start-page: 622
  year: 2015
  ident: D2CC04807H/cit114/1
  publication-title: Small
  doi: 10.1002/smll.201402081
– volume: 114
  start-page: 053102
  year: 2019
  ident: D2CC04807H/cit53/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5063449
– volume: 271
  start-page: 181
  year: 1996
  ident: D2CC04807H/cit95/1
  publication-title: Science
  doi: 10.1126/science.271.5246.181
– volume: 7
  start-page: 4399
  year: 2017
  ident: D2CC04807H/cit126/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04683-9
– volume: 15
  start-page: 14373
  year: 2021
  ident: D2CC04807H/cit107/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c03535
– volume: 12
  start-page: 4641
  year: 2018
  ident: D2CC04807H/cit73/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01191
– volume: 416
  start-page: 826
  year: 2002
  ident: D2CC04807H/cit24/1
  publication-title: Nature
  doi: 10.1038/416826a
– volume: 18
  start-page: 5
  year: 1909
  ident: D2CC04807H/cit9/1
  publication-title: Ann. Chim. Phys.
– volume: 13
  start-page: 1468
  year: 2013
  ident: D2CC04807H/cit65/1
  publication-title: Nano Lett.
  doi: 10.1021/nl304495v
– volume: 8
  start-page: 11806
  year: 2014
  ident: D2CC04807H/cit68/1
  publication-title: ACS Nano
  doi: 10.1021/nn5054798
– volume: 49
  start-page: 9574
  year: 2010
  ident: D2CC04807H/cit5/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201002332
– volume: 4
  start-page: 042004
  year: 2017
  ident: D2CC04807H/cit106/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa878f
– volume: 42
  start-page: 5891
  year: 1971
  ident: D2CC04807H/cit27/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1660042
– volume: 81
  start-page: 100101
  year: 2010
  ident: D2CC04807H/cit49/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.100101
– volume: 92
  start-page: 399
  year: 1913
  ident: D2CC04807H/cit12/1
  publication-title: Nature
  doi: 10.1038/092399c0
– volume: 367
  start-page: 3637
  year: 2009
  ident: D2CC04807H/cit36/1
  publication-title: Philos. Trans. R. Soc. London, Ser. A
– volume: 168
  start-page: 1338
  year: 1970
  ident: D2CC04807H/cit21/1
  publication-title: Science
  doi: 10.1126/science.168.3937.1338
– volume: 15
  start-page: 1310
  year: 2022
  ident: D2CC04807H/cit77/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3655-x
– ident: D2CC04807H/cit149/1
– volume: 80
  start-page: 085428
  year: 2009
  ident: D2CC04807H/cit111/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.085428
– volume: 21
  start-page: 669
  year: 1911
  ident: D2CC04807H/cit11/1
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440508637080
– volume: 21
  start-page: 123020
  year: 2019
  ident: D2CC04807H/cit15/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab5cc4
– volume: 56
  start-page: 930
  year: 1986
  ident: D2CC04807H/cit79/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.930
– volume: 42
  start-page: 644
  year: 2017
  ident: D2CC04807H/cit99/1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2017.187
– volume: 122
  start-page: 106101
  year: 2019
  ident: D2CC04807H/cit131/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.106101
– start-page: 1700124
  year: 2017
  ident: D2CC04807H/cit100/1
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201700124
– volume: 123
  start-page: 13136
  year: 2019
  ident: D2CC04807H/cit104/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01894
– volume: 11
  start-page: 5553
  year: 2011
  ident: D2CC04807H/cit47/1
  publication-title: Nano Lett.
  doi: 10.1021/nl2034688
– volume: 28
  start-page: 2940
  year: 2022
  ident: D2CC04807H/cit145/1
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927622011023
– volume: 18
  start-page: 5319
  year: 2018
  ident: D2CC04807H/cit121/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02406
– volume-title: Gassendi the Atomist: Advocate of History in an Age of Science
  year: 1988
  ident: D2CC04807H/cit1/1
  doi: 10.1017/CBO9780511521416
– volume: 13
  start-page: 4902
  year: 2013
  ident: D2CC04807H/cit62/1
  publication-title: Nano Lett.
  doi: 10.1021/nl402812y
– volume: 9
  start-page: 9497
  year: 2015
  ident: D2CC04807H/cit125/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03476
– volume-title: Microscopy and Analysis
  year: 2018
  ident: D2CC04807H/cit120/1
– volume: 7
  start-page: 13040
  year: 2016
  ident: D2CC04807H/cit129/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13040
– volume-title: The Early Development of Electron Lenses and Electron Microscopy
  year: 1980
  ident: D2CC04807H/cit20/1
– volume: 5
  start-page: 1562
  year: 2022
  ident: D2CC04807H/cit58/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c04309
– volume: 367
  start-page: 1124
  year: 2020
  ident: D2CC04807H/cit54/1
  publication-title: Science
  doi: 10.1126/science.aba1136
– volume: 254
  start-page: 1700188
  year: 2017
  ident: D2CC04807H/cit122/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201700188
– volume: 12
  start-page: 141
  year: 2012
  ident: D2CC04807H/cit64/1
  publication-title: Nano Lett.
  doi: 10.1021/nl2031629
– volume: 120
  start-page: 21998
  year: 2016
  ident: D2CC04807H/cit128/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b06554
– volume: 115
  start-page: 206803
  year: 2015
  ident: D2CC04807H/cit57/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.206803
– volume: 196
  start-page: 596
  year: 2022
  ident: D2CC04807H/cit112/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.05.039
– volume: 111
  start-page: 865
  year: 2011
  ident: D2CC04807H/cit35/1
  publication-title: Special Issue, J. Spence's 65th birthday
– volume: 83
  start-page: 245420
  year: 2011
  ident: D2CC04807H/cit141/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.245420
– volume: 14
  start-page: 317
  year: 1928
  ident: D2CC04807H/cit19/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.14.4.317
– volume: 405
  start-page: L514
  year: 1998
  ident: D2CC04807H/cit83/1
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(98)00140-X
– volume: 262
  start-page: 218
  year: 1993
  ident: D2CC04807H/cit91/1
  publication-title: Science
  doi: 10.1126/science.262.5131.218
– volume: 99
  start-page: 086102
  year: 2007
  ident: D2CC04807H/cit46/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.086102
– volume: 6
  start-page: 545
  year: 2012
  ident: D2CC04807H/cit55/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.148
– volume: 105
  start-page: 235419
  year: 2022
  ident: D2CC04807H/cit135/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.235419
– volume: 2
  start-page: 456
  year: 2018
  ident: D2CC04807H/cit133/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00548B
– volume: 180
  start-page: 163
  year: 2017
  ident: D2CC04807H/cit134/1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.03.005
– volume: 44
  start-page: 293
  year: 1897
  ident: D2CC04807H/cit10/1
  publication-title: London, Edinburgh Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786449708621070
– volume: 54
  start-page: 14031
  year: 2015
  ident: D2CC04807H/cit70/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507381
– volume: 366
  start-page: 143
  year: 1993
  ident: D2CC04807H/cit43/1
  publication-title: Nature
  doi: 10.1038/366143a0
– volume: 1
  start-page: 397
  year: 2019
  ident: D2CC04807H/cit130/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0058-y
– volume: 10
  start-page: 209
  year: 2011
  ident: D2CC04807H/cit29/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2941
– volume: 344
  start-page: 524
  year: 1990
  ident: D2CC04807H/cit90/1
  publication-title: Nature
  doi: 10.1038/344524a0
– volume: 111
  start-page: 113104
  year: 2017
  ident: D2CC04807H/cit103/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4998599
– volume: 67
  start-page: 235
  year: 2001
  ident: D2CC04807H/cit14/1
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/S0079-6816(01)00026-0
– volume: 267
  start-page: 68
  year: 1995
  ident: D2CC04807H/cit80/1
  publication-title: Science
  doi: 10.1126/science.267.5194.68
– volume: 322
  start-page: 549
  year: 1905
  ident: D2CC04807H/cit8/1
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19053220806
– volume: 7
  start-page: 161
  year: 2012
  ident: D2CC04807H/cit61/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.252
– volume: 82
  start-page: 165443
  year: 2010
  ident: D2CC04807H/cit105/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.82.165443
– volume: 33
  start-page: 063001
  year: 2021
  ident: D2CC04807H/cit140/1
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  start-page: eaay4312
  year: 2020
  ident: D2CC04807H/cit32/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4312
– volume: 5
  start-page: 4403
  year: 2014
  ident: D2CC04807H/cit96/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5403
– volume: 8
  start-page: 3582
  year: 2008
  ident: D2CC04807H/cit108/1
  publication-title: Nano Lett.
  doi: 10.1021/nl801386m
– volume: 19
  start-page: 479
  year: 2013
  ident: D2CC04807H/cit110/1
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927612014274
– volume: 31
  start-page: 2105132
  year: 2021
  ident: D2CC04807H/cit132/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105132
– volume: 3
  start-page: 143
  year: 2004
  ident: D2CC04807H/cit25/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1077
– volume: 11
  start-page: 608
  year: 1900
  ident: D2CC04807H/cit4/1
  publication-title: Science
  doi: 10.1126/science.11.277.608
– volume: 4
  start-page: 4165
  year: 2010
  ident: D2CC04807H/cit87/1
  publication-title: ACS Nano
  doi: 10.1021/nn1002425
– volume: 9
  start-page: 035009
  year: 2022
  ident: D2CC04807H/cit40/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac6c30
– volume: 53
  start-page: 8908
  year: 2014
  ident: D2CC04807H/cit124/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201403382
– volume: 102
  start-page: 624
  year: 1956
  ident: D2CC04807H/cit13/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.102.624
– volume: 110
  start-page: 185507
  year: 2013
  ident: D2CC04807H/cit30/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.185507
– volume: 13
  start-page: 4989
  year: 2013
  ident: D2CC04807H/cit52/1
  publication-title: Nano Lett.
  doi: 10.1021/nl304187e
– volume: 12
  start-page: 4651
  year: 2012
  ident: D2CC04807H/cit60/1
  publication-title: Nano Lett.
  doi: 10.1021/nl301952e
– volume: 4
  start-page: 1650
  year: 2013
  ident: D2CC04807H/cit123/1
  publication-title: Nature
– volume: 14
  start-page: 1801771
  year: 2018
  ident: D2CC04807H/cit127/1
  publication-title: Small
  doi: 10.1002/smll.201801771
– volume: 49
  start-page: 57
  year: 1982
  ident: D2CC04807H/cit78/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.57
– volume: 454
  start-page: 319
  year: 2008
  ident: D2CC04807H/cit109/1
  publication-title: Nature
  doi: 10.1038/nature07094
– volume: 21
  start-page: 236
  year: 2021
  ident: D2CC04807H/cit143/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c03587
– volume: 8
  start-page: 808
  year: 2009
  ident: D2CC04807H/cit34/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2532
– volume: 4
  start-page: 803
  year: 2009
  ident: D2CC04807H/cit89/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.347
– volume: 94
  start-page: 173117
  year: 2009
  ident: D2CC04807H/cit97/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3127503
– volume: 12
  start-page: 34074
  year: 2020
  ident: D2CC04807H/cit72/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c07564
– volume: 29
  start-page: 255303
  year: 2018
  ident: D2CC04807H/cit136/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aabb79
– volume: 39
  start-page: 83
  year: 1968
  ident: D2CC04807H/cit16/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1683116
– ident: D2CC04807H/cit37/1
– volume: 446
  start-page: 64
  year: 2007
  ident: D2CC04807H/cit84/1
  publication-title: Nature
  doi: 10.1038/nature05530
– volume: 325
  start-page: 1110
  year: 2009
  ident: D2CC04807H/cit81/1
  publication-title: Science
  doi: 10.1126/science.1176210
– volume: 11
  start-page: 12742
  year: 2017
  ident: D2CC04807H/cit147/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07504
– volume: 274
  start-page: 413
  year: 1996
  ident: D2CC04807H/cit23/1
  publication-title: Science
  doi: 10.1126/science.274.5286.413
– volume: 6
  start-page: 4063
  year: 2012
  ident: D2CC04807H/cit102/1
  publication-title: ACS Nano
  doi: 10.1021/nn300452y
– volume: 161
  start-page: 750
  year: 2020
  ident: D2CC04807H/cit74/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.01.042
– volume: 10
  start-page: 278
  year: 2011
  ident: D2CC04807H/cit31/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2957
– volume: 254
  start-page: 1319
  year: 1991
  ident: D2CC04807H/cit88/1
  publication-title: Science
  doi: 10.1126/science.254.5036.1319
– volume: 9
  start-page: 025011
  year: 2022
  ident: D2CC04807H/cit76/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ac4e9c
– volume: 14
  start-page: 3766
  year: 2014
  ident: D2CC04807H/cit66/1
  publication-title: Nano Lett.
  doi: 10.1021/nl500682j
– volume: 5
  start-page: eaav2252
  year: 2019
  ident: D2CC04807H/cit71/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2252
– volume: 4
  start-page: 497
  year: 2019
  ident: D2CC04807H/cit139/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0118-z
– volume: 1
  start-page: 51
  year: 2021
  ident: D2CC04807H/cit17/1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00047-w
– volume: 72
  start-page: 016502
  year: 2009
  ident: D2CC04807H/cit44/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/72/1/016502
– volume: 450
  start-page: 702
  year: 2007
  ident: D2CC04807H/cit45/1
  publication-title: Nature
  doi: 10.1038/nature06352
– volume: 290
  start-page: 2280
  year: 2000
  ident: D2CC04807H/cit50/1
  publication-title: Science
  doi: 10.1126/science.290.5500.2280
– volume: 6
  start-page: 7077
  year: 2012
  ident: D2CC04807H/cit48/1
  publication-title: ACS Nano
  doi: 10.1021/nn3021212
– volume: 4
  start-page: 021013
  year: 2017
  ident: D2CC04807H/cit63/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5e78
– year: 2022
  ident: D2CC04807H/cit150/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07451
– volume: 87
  start-page: 034104
  year: 2005
  ident: D2CC04807H/cit26/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1991989
– volume: 464
  start-page: 571
  year: 2010
  ident: D2CC04807H/cit39/1
  publication-title: Nature
  doi: 10.1038/nature08879
– volume: 6
  start-page: 7943
  year: 2015
  ident: D2CC04807H/cit59/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8943
– volume: 333
  start-page: 999
  year: 2011
  ident: D2CC04807H/cit85/1
  publication-title: Science
  doi: 10.1126/science.1208759
– volume: 293
  start-page: 72
  year: 1896
  ident: D2CC04807H/cit7/1
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18962930107
– volume: 57
  start-page: 35
  year: 1966
  ident: D2CC04807H/cit3/1
  publication-title: Isis
  doi: 10.1086/350077
– year: 2022
  ident: D2CC04807H/cit144/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR01018F
– volume: 113
  start-page: 115501
  year: 2014
  ident: D2CC04807H/cit67/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.115501
– volume: 1
  start-page: e7479
  year: 2015
  ident: D2CC04807H/cit119/1
  publication-title: Res. Ideas Outcomes
  doi: 10.3897/rio.1.e7479
– volume: 25
  start-page: 166
  year: 2019
  ident: D2CC04807H/cit148/1
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927619001569
– volume: 1
  start-page: 457
  year: 2001
  ident: D2CC04807H/cit86/1
  publication-title: Nano Lett.
  doi: 10.1021/nl015549q
SSID ssj0000158
Score 2.4423554
SecondaryResourceType review_article
Snippet The manipulation of individual atoms has developed from visionary speculation into an established experimental science. Using focused electron irradiation in a...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12274
SubjectTerms Carbon nanotubes
Chemistry
Crystal structure
Electron beams
Electron irradiation
Graphene
Graphite - chemistry
Microscopy, Electron, Scanning Transmission
Nanotubes, Carbon - chemistry
Radiation damage
Scanning probe microscopes
Scanning transmission electron microscopy
Silicon - chemistry
Thermal stability
Title Identifying and manipulating single atoms with scanning transmission electron microscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/36260089
https://www.proquest.com/docview/2731414237
https://www.proquest.com/docview/2726406954
https://pubmed.ncbi.nlm.nih.gov/PMC9632407
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1364-548X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000158
  issn: 1359-7345
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY7gEuiNdCYUFGICRUBRLbefi4Kl0VVJYDqZRbFDuOFmk3XbbthV_PjJ1X1R4WLlGVWI2V78tkZuyZj5D3ZRnwSpfwIiWJ8ISKY68oYuUJ5peBiitwyjFQ_H4RzZfiWxZmvVKhrS7ZqE_6z8G6kv9BFc4Brlgl-w_Idn8KJ-A34AtHQBiOd8LYVdm6SiVMgGMvC6fHhUkCOFyZCQTV100J21o7gSLUhajXADBmyiatEM7kGvfmYZXKzkpv11FAD0tJbK62q_eyBtWpgQwyCz-3a7tVIF01tr9JLkBciglTPrCHPBIeBDWZ-1wcONcY0TAZkMUJ9TUmMWDM6fDsGWufY6_TkmltC9sv-09Suwx_8SM_Xy4WeTrL0g83vz0UC8NF9UY55YgcsziK2Igcn83Sr4tB3zArzNrNtO1Ly-Xn_na7nsheeLG_S_bothWFsc5H-og8bKIGeuYo8JjcM_UTcn_aivU9JdmAChRgoEMqUEcFaqlAkQq0pQIdUoG2VKA9FZ6R5fksnc69RjTD0xBJbjyluJKhDmNRKR2DP1jFha8CLooiEMz40oARL0yiBPbuh89kpHmpAh2aJAlVVPETMqpXtXlBaKBYWEoYIgHBRDFppGEq4VXBQ62EHJOP7QPMddNRHoVNrnK7s4HL_AubTu3Dno_Ju27sjeujcnDUaYtD3rxn6xwc7EAEuH1rTN52l-HJ4NJWUZvVFseAY-9HMhRj8tzB1t0GGy6BpwvTjXcA7QZgh_XdK_WvS9tpXaKYgQ_3PQHou_E9hV7eYUKvyIP-zTolo83t1rwGR3aj3jS0_QsGxqSU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+and+manipulating+single+atoms+with+scanning+transmission+electron+microscopy&rft.jtitle=Chemical+communications+%28Cambridge%2C+England%29&rft.au=Susi%2C+Toma&rft.date=2022-11-03&rft.issn=1364-548X&rft.eissn=1364-548X&rft.volume=58&rft.issue=88&rft.spage=12274&rft_id=info:doi/10.1039%2Fd2cc04807h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon