Optimization of Wave Energy Converter Arrays by an Improved Differential Evolution Algorithm

Since different incident waves will cause the same array to perform differently with respect to the wave energy converter (WEC), the parameters of the incident wave, including the incident angle and the incident wave number, are taken into account for optimizing the wave energy converter array. Then...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 11; no. 12; p. 3522
Main Authors Fang, Hong-Wei, Feng, Yu-Zhu, Li, Guo-Ping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en11123522

Cover

More Information
Summary:Since different incident waves will cause the same array to perform differently with respect to the wave energy converter (WEC), the parameters of the incident wave, including the incident angle and the incident wave number, are taken into account for optimizing the wave energy converter array. Then, the differential evolution (DE) algorithm, which has the advantages of simple operation procedures and a strong global search ability, is used to optimize the wave energy converter array. However, the traditional differential evolution algorithm cannot satisfy the convergence precision and speed simultaneously. In order to make the optimization results more accurate, the concept of an adaptive mutation operator is presented to improve the performance of differential evolution algorithm. It gives the improved algorithm a faster convergence and a higher precision ability. The three-float, five-float, and eight-float arrays were optimized, respectively. It can be concluded that the larger the size of the array is, the greater the interaction between the floats is. Hence, a higher efficiency of wave energy extraction for wave energy converter arrays is achieved by the layout optimization of the array of wave energy converters. The results also show that the optimal layout of the array system is inhomogeneously distributed and that the improved DE algorithm used on array optimization is superior to the traditional DE algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1996-1073
1996-1073
DOI:10.3390/en11123522